計算:
(1)(x
1
2
x
1
3
6    
(2)lg5+log36+lg2-log32.
考點:對數(shù)的運算性質(zhì),有理數(shù)指數(shù)冪的化簡求值
專題:函數(shù)的性質(zhì)及應用
分析:(1)利用分數(shù)指數(shù)冪的運算法則求解.
(2)利用對數(shù)的運算法則求解.
解答: 解:(1)(x
1
2
x
1
3
6    
=x3x2
=x5
(2)lg5+log36+lg2-log32
=(lg5+lg2)+(log36-log32)
=1+1=2.
點評:本題考查對數(shù)式和指數(shù)式的求值,是基礎(chǔ)題,解題時要認真審題,注意運算法則的合理運用.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知二次函數(shù)f(x)的最小值為1,f(0)=f(2)=3,g(x)=f(x)-ax (a∈R).
(1)求f(x)的解析式;
(2)若g(x)在[-1,1]上的最小值為1,求實數(shù)a的值;
(3)若在區(qū)間[-1,1]上,y=g(x)的圖象恒在y=2x+7的圖象下方,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若(m+1)3<(3-2m)3,試求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=4x3-3x2sinθ+
1
32
,其中x∈R,θ為參數(shù),且0≤θ<π.
(1)當θ=0時,判斷函數(shù)f(x)是否有極值,說明理由;
(2)要使函數(shù)f(x)的極小值大于零,求參數(shù)θ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x3-3ax(a∈R),
(1)當a=2時,求y=f(x)在點x=1的切線方程;
(2)若直線x+y+m=0對任意的m∈R都不是曲線y=f(x)的切線,求a的取值范圍;
(3)設(shè)g(x)=|f(x)|,x∈[-1,1],求g(x)的最大值F(a)的解析式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,矩形ABCD和梯形BEFC所在的平面互相垂直,BE∥CF,BE<CF,∠BCF=
π
2
,AD=
3
,EF=2CD=2.
(Ⅰ)求證:DF∥平面ABE;
(Ⅱ)求直線AF與平面ABCD所成的角的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)命題p:方程
x2
4-t
+
y2
t-2
=1所表示的曲線為焦點在x軸上的橢圓;命題q:曲線y=x2+(2t-3)x+1與x軸交于不同的兩點.如果“p∨q”為真,“p∧q”為假,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

公差不為0的等差數(shù)列{an}的前21項的和等于前8項的和,若a8+ak=0,則k=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=cos2x+sin2x的最小值是
 

查看答案和解析>>

同步練習冊答案