【題目】如圖,已知梯形中,,,,四邊形為矩形,,平面平面.
(1)求證:平面;
(2)在線段上是否存在點(diǎn),使得直線與平面所成角的正弦值為,若存在,求出線段的長.
【答案】(1)證明見解析;(2)存在,2.
【解析】
(1)根據(jù)題意,建立空間直角坐標(biāo)系,寫出各個(gè)點(diǎn)的坐標(biāo).得平面的法向量,求得與法向量的數(shù)量積,即可證明平面;
(2)假設(shè)存在點(diǎn)滿足題意,令表示出的坐標(biāo)和點(diǎn)坐標(biāo).利用直線與平面所成角的正弦值為,可由向量的夾角運(yùn)算求得的值,進(jìn)而表示出求得即可.
(1)證明:設(shè)中點(diǎn)為.取為原點(diǎn),所在直線為軸,所在直線為軸,所在直線為軸建立空間直角坐標(biāo)系,如下圖所示:
則,,,,
,,
設(shè)平面的法向量為,
不妨設(shè),
又,
.
,
又平面,
平面.
(2)設(shè),,
,
,
又平面的一個(gè)法向量為,
,
,或,
當(dāng)時(shí),,,
當(dāng)時(shí),,,
綜上.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,三棱柱ABC-A1B1C1中,側(cè)棱垂直于底面,∠ACB=90°,AC=BC=AA1,D是棱AA1的中點(diǎn).
(1)證明:平面BDC1⊥平面BDC;
(2)平面BDC1分此棱柱為兩部分,求這兩部分體積的比.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓經(jīng)過點(diǎn),離心率為, 為坐標(biāo)原點(diǎn).
(I)求橢圓的方程.
(II)若點(diǎn)為橢圓上一動(dòng)點(diǎn),點(diǎn)與點(diǎn)的垂直平分線l交軸于點(diǎn),求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢:()過點(diǎn),且橢圓的離心率為.過橢圓左焦點(diǎn)且斜率為1的直線與橢圓交于,兩點(diǎn).
(1)求橢圓的方程;
(2)求線段的垂直平分線的方程;
(3)求三角形的面積.(為坐標(biāo)原點(diǎn))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知是橢圓:上的點(diǎn),直線:交橢圓于不同的兩點(diǎn),.
(1)求的取值范圍;
(2)若直線不過點(diǎn),直線的斜率為,求直線的斜率;
(3)若直線不過點(diǎn),直線的斜率為,求直線的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:過點(diǎn)和點(diǎn).
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)直線與橢圓相交于不同的兩點(diǎn), ,是否存在實(shí)數(shù),使得?若存在,求出實(shí)數(shù);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(,,為常數(shù)),當(dāng)時(shí),只有一個(gè)實(shí)根;當(dāng)時(shí),只有3個(gè)相異實(shí)根,現(xiàn)給出下列4個(gè)命題:
①和有一個(gè)相同的實(shí)根;
②和有一個(gè)相同的實(shí)根;
③的任一實(shí)根大于的任一實(shí)根;
④的任一實(shí)根小于的任一實(shí)根.
其中真命題的序號是______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,已知曲線C:(a>0),過點(diǎn)P(-2,-4)的直線l的參數(shù)方程為(t為參數(shù)),l與C分別交于M,N.
(1)寫出C的平面直角坐標(biāo)系方程和l的普通方程;
(2)若|PM|,|MN|,|PN|成等比數(shù)列,求a的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com