【題目】如圖,已知四棱錐 中, .
(1)證明:頂點在底面的射影在的平分線上;
(2)求二面角的余弦值.
【答案】(1)見解析;(2)余弦值為.
【解析】試題分析:(1)根據(jù)題意作出底面,分別作,垂直分別為,連接,證明,進而根據(jù)角平分線的定義得到結(jié)論;(2)建立坐標系,計算兩個面的二面角,再由公式得到兩個法向量的夾角。
解析:
(1)設(shè)點為點在底面的射影,連接,則底面,
分別作,垂直分別為,連接,
因為底面, 底面,所以,
又 ,所以平面平面,
所以,
同理,即,
又,所以,
所以,又,所以,
所以,所以為的平分線.
(2)以為原點,分別以所在直線為軸,建立如圖所示的空間直角坐標系,
因為,所以,因為為的平分線,
所以,所以,
則,
所以
設(shè)平面的一個法向量為,
則 ,可取,
設(shè)平面的一個法向量為,
則由,可取,
所以 ,
所以二面角的余弦值為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線的極坐標方程是,以極點為平面直角坐標系的原點,極軸為軸的正半軸,建立平面直角坐標系,直線的參數(shù)方程是 (為參數(shù)).
(1)將曲線的極坐標方程化為直角坐標方程;
(2)若直線與曲線相交于兩點,且,求直線的傾斜角的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=mx2-mx-1.
(1)若對于x∈R,f(x)<0恒成立,求實數(shù)m的取值范圍;
(2)若對于x∈[1,3],f(x)<5-m恒成立,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】數(shù)列: 滿足: , 或1().對任意,都存在,使得.,其中 且兩兩不相等.
(I)若.寫出下列三個數(shù)列中所有符合題目條件的數(shù)列的序號;
①1,1,1,2,2,2;②1,1,1,1,2,2,2,2;③1,l,1,1,1,2,2,2,2
(Ⅱ)記.若,證明: ;
(Ⅲ)若,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某課外實習(xí)作業(yè)小組調(diào)查了1000名職場人士,就入職兩家公司的意愿做了統(tǒng)計,得到如下數(shù)據(jù)分布:
(1)請分別計算40歲以上(含40歲)與40歲以下全體中選擇甲公司的頻率(保留兩位小數(shù)),根據(jù)計算結(jié)果,你能初步得出什么結(jié)論?
(2)若分析選擇意愿與年齡這兩個分類變量,計算得到的的觀測值為,測得出“選擇意愿與年齡有關(guān)系”的結(jié)論犯錯誤的概率的上限是多少?并用統(tǒng)計學(xué)知識分析,選擇意愿與年齡變量和性別變量哪一個關(guān)聯(lián)性更大?
附:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在平面直角坐標系中,已知點,以原點為極點, 軸的正半軸為極軸建立坐標系,曲線的極坐標方程為,過點作極坐標方程為的直線的平行線,分別交曲線于兩點.
(1)寫出曲線和直線的直角坐標方程;
(2)若成等比數(shù)列,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知經(jīng)過兩點的圓半徑小于5,且在軸上截得的線段長為.
(1)求圓的方程;
(2)已知直線,若與圓交于兩點,且以線段為直徑的圓經(jīng)過坐標原點,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓: 的離心率為,以原點為圓心,橢圓的短半軸長為半徑的圓與直線相切. 、是橢圓的右頂點與上頂點,直線與橢圓相交于、兩點.
(Ⅰ)求橢圓的方程;
(Ⅱ)當(dāng)四邊形面積取最大值時,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校藝術(shù)節(jié)對同一類的,,,四項參賽作品,只評一項一等獎,在評獎揭曉前,甲、乙、丙、丁四位同學(xué)對這四項參賽作品預(yù)測如下:
甲說:“是或作品獲得一等獎”;
乙說:“作品獲得一等獎”;
丙說:“,兩項作品未獲得一等獎”;
丁說:“是作品獲得一等獎”.
若這四位同學(xué)中只有兩位說的話是對的,則獲得一等獎的作品是__________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com