(本小題滿分8分)
如圖,正方體 的棱長是2,
(1)求正方體的外接球的表面積;
(2)求
(1)12π
(2)
(1)2R=,∴ R=,  S表面積­="12π "                     ………….4分
(2)連接 A­­­­1C1,∠CA1C1為所求角 sin∠CA1C1=           …………8分
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題14分)
如圖,在直三棱柱中,,點在邊上,。
(1)求證:平面
(2)如果點的中點,求證:平面 .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,已知正三棱柱的各棱長都為,為棱上的動點.

(Ⅰ)當時,求證:;
(Ⅱ)若,求二面角的大。              
(Ⅲ)在(Ⅱ)的條件下,求點到平面的距離.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分14分)
如圖,在棱長為a的正方體ABCD—A1B1C1D1中,E、F分別為棱AB和BC的中點,EF交BD于H。
(1)求二面角B1—EF—B的正切值;
(2)試在棱B1B上找一點M,使D1M⊥平面EFB1,并證明你的結(jié)論;
(3)求點D1到平面EFB1的距離。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,△ABC內(nèi)接于圓O,AB是圓O的直徑,四邊形DCBE為平行
四邊形,DC平面ABC ,,已知AE與平面ABC所成的角為,

(1)證明:平面ACD平面
(2)記,表示三棱錐A-CBE的體積,求的表達式;
(3)當取得最大值時,求二面角D-AB-C的大。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

在空間中,下列命題正確的個數(shù)為(  )
(1)有兩組對邊相等的四邊形是平行四邊形 (2)四邊相等的四邊形是菱形
(3)平行于同一條直線的兩條直線平行 (4)有兩邊及其夾角對應(yīng)相等的兩個三角形全等
A. 1B. 2 C. 3D. 4

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
如圖5所示,在正方體E是棱的中點。
(Ⅰ)求直線BE的平面所成的角的正弦值;
(II)在棱上是否存在一點F,使平面證明你的結(jié)論。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知是不同的兩個平面,直線,直線,條件沒有公共點,條件,則
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知過球面上三點、的截面與球心的距離為球半徑的一半,且,則這個球的表面積等于( )
A.B.C.D.

查看答案和解析>>

同步練習冊答案