已知圓C的方程可以表示為x2+y2-2x-4y+m=0,其中m∈R.
(1)若m=1,求圓C被直線x+y-1=0截得的弦長
(2)若圓C與直線l:x+2y-4=0相交于M、N兩點,且OM⊥ON(O為坐標(biāo)原點),求m的值.
考點:二元二次方程表示圓的條件,直線與圓的位置關(guān)系
專題:綜合題,直線與圓
分析:(1)求出圓心到直線的距離,即可求圓C被直線x+y-1=0截得的弦長;
(2)設(shè)M(x1,y1),N(x2,y2).與圓的方程聯(lián)立可得△>0及根與系數(shù)關(guān)系,再利用OM⊥ON,x1x2+y1y2=0即可解出m.
解答: 解:(1)m=1,配方得(x-1)2+(y-2)2=4,圓心到直線的距離為
|1+2-1|
2
=
2

所以圓C被直線x+y-1=0截得的弦長為2
4-2
=2
2

(2)設(shè)M(x1,y1)、N(x2,y2),
直線代入圓的方程得5x2-8x+4(m-4)=0,
所以x1+x2=
8
5
,x1x2=
4(m-4)
5

因為OM⊥ON,所以x1x2+y1y2=0,
所以
5
4
×
4(m-4)
5
-
8
5
+4=0,
所以m=
8
5
,此時△>0
點評:本題考查了直線與圓相交問題轉(zhuǎn)化為方程聯(lián)立得到△>0及根與系數(shù)關(guān)系、向量垂直與數(shù)量積的關(guān)系等基礎(chǔ)知識與基本技能方法,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知圓M:(x+1)2+y2=16及定點N(1,0),點P是圓M上的動點,點Q在線段NP上,點G在線段MP上,且滿足
NP
=2
NQ
,
GQ
NP
=0.
(Ⅰ)求點G的軌跡C的方程;
(Ⅱ)是否存在不垂直于坐標(biāo)軸的直線l和(1)中所求軌跡C相交于不同兩點A,B,且滿足|NA|=|NB|,若存在,求出直線l的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

連續(xù)拋兩次質(zhì)地均勻的骰子得到的點數(shù)分別為m和n,將m,n作為Q點的橫、縱坐標(biāo).
(1)記向量
a
=(m,n),
b
=(1,-1)的夾角為θ,求θ∈(0,
π
2
]的概率;
(2)求點Q落在區(qū)域|x-2|+|y-2|≤2內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,已知四棱錐P-ABCD是底面邊長為2的菱形,且∠ABC=60°,PA=PB=
2
,PC=2.
(Ⅰ)求證:平面PAB⊥平面ABCD;
(Ⅱ)求二面角A-PC-B的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為
x=2cosα
y=2+2sinα
,(α為參數(shù)),M是C1上動點,P點滿足
OP
=2
OM
,P點的軌跡為曲線C2
(1)求C2的方程;
(2)在以O(shè)為極點,x軸正半軸為極軸的極坐標(biāo)系中,射線θ=
π
3
與C1的異于極點的交點為A,與C2的異于極點的交點為B,求|AB|;
(3)若直線l:
x=4-
3
t
y=-t
(t為參數(shù))和曲線C2交于E、F兩點,且EF的中點為G,又點H(4,0),求|HG|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在多面體ABCDEF中,底面ABCD是正方形,四邊形BDEF是矩形,平面BDEF⊥平面ABCD,G和H分別是CE和CF的中點.
(1)求證:平面AFC⊥平面BDEF;
(2)求證:平面BDGH∥平面AEF.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,三棱錐V-ABC中,△VAB是邊長為2的正三角形,點V在平面ABC上的射影D在AB邊上,△ABC是以B為直角頂點的等腰直角三角形.
(Ⅰ)求證:面VAB⊥面VBC;
(Ⅱ)求二面角B-VA-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A、B、C所對的邊分別是a,b,c,已知
m
=(sinB,2cosB),
n
=(cosB,sin2
π
4
-
B
2
),
m
n
=
3
5

(1)求cosB的值;
(2)若2b=a+c,
BA
BC
=9,求b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知曲線C的極坐標(biāo)方程是ρ=4cosθ,以極點為平面直角坐標(biāo)系的原點,極軸為x的正半軸,建立平面直角坐標(biāo)系.則曲線C的普通方程為
 

查看答案和解析>>

同步練習(xí)冊答案