已知直線l1:x+y+1=0,l2:2x+2y-1=0,則l1,l2之間的距離為( 。
分析:直線l1:x+y+1=0,即2x+2y+2=0,l2:2x+2y-1=0,由此能求出直線l1和l2之間的距離.
解答:解:∵直線l1:x+y+1=0,即2x+2y+2=0,
l2:2x+2y-1=0,
∴直線l1和l2之間的距離:
d=
|2-(-1)|
4+4
=
3
2
4

故選C.
點(diǎn)評:本題考查兩條平行線間的距離公式的應(yīng)用,是基礎(chǔ)題.解題時要認(rèn)真審題,仔細(xì)解答.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l1:x+y-2=0和l2:x-7y-4=0,過原點(diǎn)O的直線與L1、L2分別交A、B兩點(diǎn),若O是線段AB的中點(diǎn),求直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l1:x-y+1=0和直線l2:2x+y+2=0的交點(diǎn)為P.
(1)求交點(diǎn)P的坐標(biāo);
(2)求過點(diǎn)P且與直線2x-3y-1=0平行的直線l3的方程;
(3)若過點(diǎn)P的直線l4被圓C:x2+y2-4x+4y-17=0截得的弦長為8,求直線l4的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l1:x-y+C1=0,C1=
2
,l2:x-y+C2=0,l3:x-y+C3=0,…,ln:x-y+Cn=0(其中C1<C2<C3<…<Cn),當(dāng)n≥2時,直線ln-1與ln間的距離為n.
(1)求Cn;
(2)求直線ln-1:x-y+Cn-1=0與直線ln:x-y+Cn=0及x軸、y軸圍成圖形的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

查看答案和解析>>

同步練習(xí)冊答案