設(shè)P1(x1,y1),P2(x2,y2),…,Pn(xn,yn)(n≥3,n∈N)是二次曲線C上的點(diǎn),且a1=|OP1|2,a2=|OP2|2,…,an=|OPn|2構(gòu)成了一個(gè)公差為d(d≠0)的等差數(shù)列,其中O是坐標(biāo)原點(diǎn),記Sn=a1+a2+…+an

(1)若C的方程為=1,n=3,點(diǎn)P1(10,0)且S3=255,求點(diǎn)P3的坐標(biāo)(只需寫(xiě)出一個(gè));

(2)若C的方程為(a>b>0),點(diǎn)P1(a,0),對(duì)于給定的自然數(shù)n,當(dāng)公差d變化時(shí),求Sn的最小值;

(3)請(qǐng)選定一條除橢圓外的二次曲線C及C上一點(diǎn)P1,對(duì)于給定的自然數(shù)n,寫(xiě)出符合條件的點(diǎn)P1,P2,…,Pn存在的充要條件,并說(shuō)明理由.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:中學(xué)教材標(biāo)準(zhǔn)學(xué)案 數(shù)學(xué) 高二上冊(cè) 題型:044

設(shè)P1(x1,y1),P2(x2,y2),…,Pn(xn,yn)(n≥3,n∈N)是二次曲線C上的點(diǎn),且a1=|OP1|2,a2=|OP2|2,…,an=|OPn|2構(gòu)成了一個(gè)公差為d(d≠0)的等差數(shù)列,其中O是坐標(biāo)原點(diǎn).記Sn=a1+a2+…+an

(1)若C的方程為-y2=1,n=3.點(diǎn)P1(3,0)及S3=162,求點(diǎn)P3的坐標(biāo);(只需寫(xiě)出一個(gè))

(2)若C的方程為y2=2px(p≠0).點(diǎn)P1(0,0),對(duì)于給定的自然數(shù)n,證明:(x1+p)2,(x2+p)2,…,(xm+p)2成等差數(shù)列;

(3)若C的方程為=1(a>b>0).點(diǎn)P1(a,0),對(duì)于給定的自然數(shù)n,當(dāng)公差d變化時(shí),求Sn的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:044

設(shè)P1(x1,y1),P1(x2,y2),…,Pn(xn,yn)(n³3,nÎN)是二次曲線C上的點(diǎn),且構(gòu)成了一個(gè)公差d(d¹0)的等差數(shù)列,其中O是坐標(biāo)原點(diǎn).記Sn=a1+a2+…+an

1)若C的方程為.點(diǎn)P1(3,0)及S3=162,求點(diǎn)P3的坐標(biāo);(只需寫(xiě)出一個(gè))

2)若C的方程為y2=2px(p¹0).點(diǎn)P1(0,0),對(duì)于給定的自然數(shù)n,證明:(x1+p2,(x2+p)2,…,(xn+p2成等差數(shù)列;

3)若C的方程為.點(diǎn)P1(a,0),對(duì)于給定的自然數(shù)n,當(dāng)公差d變化時(shí),求Sn的最小值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:數(shù)學(xué)教研室 題型:044

設(shè)P1(x1y1),P1(x2y2),…,Pn(xn,yn)(n³3,nÎN)是二次曲線C上的點(diǎn),且構(gòu)成了一個(gè)公差d(d¹0)的等差數(shù)列,其中O是坐標(biāo)原點(diǎn).記Sn=a1+a2+…+an

1)若C的方程為.點(diǎn)P1(3,0)及S3=162,求點(diǎn)P3的坐標(biāo);(只需寫(xiě)出一個(gè))

2)若C的方程為y2=2px(p¹0).點(diǎn)P1(0,0),對(duì)于給定的自然數(shù)n,證明:(x1+p2,(x2+p)2,…,(xn+p2成等差數(shù)列;

3)若C的方程為.點(diǎn)P1(a,0),對(duì)于給定的自然數(shù)n,當(dāng)公差d變化時(shí),求Sn的最小值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)P1(x1,y1)是直線lf(x,y)=0上一點(diǎn),P2(x2,y2)是不在直線l上的點(diǎn),則方程f(x,y)+f(x1,y1)+f(x2,y2)=0所表示的直線與l的關(guān)系是(  )

A.平行         B.重合

C.相交         D.位置關(guān)系不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:上海高考真題 題型:解答題

設(shè)P1(x1,y1),P2(x2,y2),…,Pn(xn,yn)(n≥3,n∈N) 是二次曲線C上的點(diǎn),且a1=|OP1|2,a2=|OP2|2,…,an=|OPn|2構(gòu)成了一個(gè)公差為d(d≠0) 的等差數(shù)列,其中O是坐標(biāo)原點(diǎn)。記Sn=a1+a2+…+an,
(1)若C的方程為-y2=1,n=3,點(diǎn)P1(3,0) 及S3=162,求點(diǎn)P3的坐標(biāo);(只需寫(xiě)出一個(gè))
(2)若C的方程為y2=2px(p≠0),點(diǎn)P1(0,0),對(duì)于給定的自然數(shù)n,證明:(x1+p)2,(x2+p)2,…,(xn+p)2成等差數(shù)列;
(3)若C的方程為(a>b>0),點(diǎn)P1(a,0),對(duì)于給定的自然數(shù)n,當(dāng)公差d變化時(shí),求Sn的最小值。

查看答案和解析>>

同步練習(xí)冊(cè)答案