已知函數(shù)f(x)=ax2-3x+2至多有一個(gè)零點(diǎn),則a的取值范圍是
 
分析:由“函數(shù)f(x)=ax2-3x+2至多有一個(gè)零點(diǎn)”,則有函數(shù)圖象與x軸至多有一個(gè)交點(diǎn),即相應(yīng)方程至多有一個(gè)根,用判別式法求解即可,要注意a的討論.
解答:解:當(dāng)a=0時(shí),f(x)=ax2-3x+2=-3x+2=0
∴x=
2
3

符合題意.
當(dāng)a≠0時(shí),f(x)=ax2-3x+2=0
∵函數(shù)f(x)=ax2-3x+2至多有一個(gè)零點(diǎn)
∴△=9-8a≤0
∴a≥
9
8

綜上:a的取值范圍是{a|a=0或a≥
9
8
}
故答案為:{a|a=0或a≥
9
8
}
點(diǎn)評:本題主要考查函數(shù)的零點(diǎn),即考查二次函數(shù)的圖象與x軸的交點(diǎn)的橫坐標(biāo),對應(yīng)方程的根,要注意數(shù)形結(jié)合思想的應(yīng)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)當(dāng)a∈[-2,
1
4
)
時(shí),求f(x)的最大值;
(2)設(shè)g(x)=[f(x)-lnx]•x2,k是g(x)圖象上不同兩點(diǎn)的連線的斜率,否存在實(shí)數(shù)a,使得k≤1恒成立?若存在,求a的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•海淀區(qū)二模)已知函數(shù)f(x)=a-2x的圖象過原點(diǎn),則不等式f(x)>
34
的解集為
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=a|x|的圖象經(jīng)過點(diǎn)(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=a•2x+b•3x,其中常數(shù)a,b滿足a•b≠0
(1)若a•b>0,判斷函數(shù)f(x)的單調(diào)性;
(2)若a=-3b,求f(x+1)>f(x)時(shí)的x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=a-2|x|+1(a≠0),定義函數(shù)F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 給出下列命題:①F(x)=|f(x)|; ②函數(shù)F(x)是奇函數(shù);③當(dāng)a<0時(shí),若mn<0,m+n>0,總有F(m)+F(n)<0成立,其中所有正確命題的序號是
 

查看答案和解析>>

同步練習(xí)冊答案