【題目】已知函數(shù)

(1)求函數(shù)的單調(diào)區(qū)間;

(2)求證:函數(shù)在公共定義域內(nèi),恒成立;

(3)若存在兩個不同的實(shí)數(shù),滿足,求證:

【答案】(1)增區(qū)間為,減區(qū)間為;(2)證明見解析;(3)證明見解析.

【解析】分析:(1)構(gòu)造函數(shù),對函數(shù)求導(dǎo),得到得到導(dǎo)函數(shù)的正負(fù),進(jìn)而得到單調(diào)區(qū)間和極值;(2)構(gòu)造函數(shù),對函數(shù)求導(dǎo)研究函數(shù)的單調(diào)性進(jìn)而得到函數(shù)的最值,使得最小值大于2即可;(3)要證原式只需要證,故得到即證:,變量集中設(shè)即可,轉(zhuǎn)化為關(guān)于t的不等式.

詳解:

(1)函數(shù)的定義域?yàn)?/span>,,

故當(dāng)時,,當(dāng)時,,

故函數(shù)的單調(diào)增區(qū)間為,單調(diào)減區(qū)間為;

(2)證明:函數(shù)的公共定義域?yàn)?/span>,

,

設(shè),則上單調(diào)遞增,故;

設(shè),當(dāng)時有極大值點(diǎn),

;故;

故函數(shù)在公共定義域內(nèi),.

(3)證明:不妨設(shè),由題意得,

,;所以;

而要證,只需證明;

即證明;即證明;

即證明,;令,則;

即證明;設(shè);

,故函數(shù)在區(qū)間上是增函數(shù),

所以,即;所以不等式成立.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正四棱柱ABCD﹣A1B1C1D1中,AB=1,AA1=t,建立如圖所示的空間直角坐標(biāo)系Oxyz

(1)若t=1,求異面直線AC1A1B所成角的大。

(2)若t=5,求直線AC1與平面A1BD所成角的正弦值;

(3)若二面角A1—BD—C的大小為120°,求實(shí)數(shù)t的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,平面平面,,,,.

(1)求直線與平面所成角的正弦值.

(2)在棱上是否存在點(diǎn),使得平面?若存在,求的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某商場為了解該商場某商品近5年日銷售量(單位:件),隨機(jī)抽取近5年50天的銷售量,統(tǒng)計(jì)結(jié)果如下:

日銷售量

100

150

天數(shù)

30

20

頻率

若將上表中頻率視為概率,且每天的銷售量相互獨(dú)立.則在這5年中:

(1)求5天中恰好有3天銷售量為150件的概率(用分式表示);

(2)已知每件該商品的利潤為20元,用X表示該商品某兩天銷售的利潤和(單位: 元),求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) ,的值域是,則實(shí)數(shù)的取值范圍是(  )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在正整數(shù)數(shù)列中,由1開始按如下規(guī)則依次取它的項(xiàng):第一次取1;第二次取2個連續(xù)偶數(shù);第三次取3個連續(xù)奇數(shù);第四次取4個連續(xù)偶數(shù);第五次取5個連續(xù)奇數(shù);……按此規(guī)律取下去,得到一個子數(shù)列,,……則在這個子數(shù)列中,第個數(shù)是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,以O(shè)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系.若直線l的極坐標(biāo)方程為 ,曲線C的極坐標(biāo)方程為:ρsin2θ=cosθ,將曲線C上所有點(diǎn)的橫坐標(biāo)縮短為原來的一半,縱坐標(biāo)不變,然后再向右平移一個單位得到曲線C1
(Ⅰ)求曲線C1的直角坐標(biāo)方程;
(Ⅱ)已知直線l與曲線C1交于A,B兩點(diǎn),點(diǎn)P(2,0),求|PA|+|PB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,角A,B,C所對的邊分別為a,b,c,且滿足acosC=b﹣ c. (Ⅰ)求角A的大;
(Ⅱ)若B= ,AC=4,求BC邊上的中線AM的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】共享單車已成為一種時髦的新型環(huán)保交通工具,某共享單車公司為了拓展市場,對,兩個品牌的共享單車在編號分別為1,2,3,4,5的五個城市的用戶人數(shù)(單位:十萬)進(jìn)行統(tǒng)計(jì),得到數(shù)據(jù)如下:

城市品牌

1

2

3

4

5

品牌

3

4

12

6

8

品牌

4

3

7

9

5

(Ⅰ)若共享單車用戶人數(shù)超過50萬的城市稱為“優(yōu)城”,否則稱為“非優(yōu)城”,據(jù)此判斷能否有的把握認(rèn)為“優(yōu)城”和共享單車品牌有關(guān)?

(Ⅱ)若不考慮其它因素,為了拓展市場,對品牌要從這五個城市選擇三個城市進(jìn)行宣傳.

(i)求城市2被選中的概率;

(ii)求在城市2被選中的條件下城市3也被選中的概率.

附:參考公式及數(shù)據(jù)

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

同步練習(xí)冊答案