在全球金融風(fēng)暴背景下,某政府機(jī)構(gòu)調(diào)查了某地工薪階層10000人的月工資收入,并把調(diào)查結(jié)果畫成如圖所示的頻率分布直方圖,請(qǐng)將頻率當(dāng)做概率解答以下問(wèn)題:
(1)為了了解工薪階層對(duì)月工資收入的滿意程度,要用分層抽樣方法從所調(diào)查的10000人中抽出100人做電話詢?cè)L,則在(2000,3500](元)月工資收入段抽出多少人?
(2)為刺激消費(fèi),政府計(jì)劃給該地所有工薪階層的人無(wú)償發(fā)放購(gòu)物消費(fèi)劵,方法如下:月工資不多于2000元的每人可領(lǐng)取5000元的消費(fèi)劵;月工資在(2000,3500](元)間的每人可領(lǐng)取2000元的消費(fèi)劵;月工資多于3500元的每人可領(lǐng)取1000元的消費(fèi)劵。用隨機(jī)變量ξ表示該地某一工薪階層的人可領(lǐng)取的消費(fèi)劵金額,求ξ的分布列與期望(均值)。
(1)65(2)2850
(I)由直方圖可得(2000,3500](元)月收入段共有
10000×(0.0005+0.0005+0.0003) ×500=6500(人)
按分層抽樣應(yīng)抽出6500×=65人.
(II)根據(jù)圖表,某一工薪階層的人可領(lǐng)取的消費(fèi)劵金額
ξ=5000,2000,1000,對(duì)應(yīng)的概率分別為0.3,0.65,,0.05,
其分布列如下:
ξ
5000
2000
1000
P
0.3
0.65
0.05
期望值Eξ=5000×0.3+2000×0.65+1000×0.05=1500+1300+50=2850
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

參考公式

0.50
0.40
0.25
0.15
0.10
0.05
0.025
0.010
0.005
0.001

0.455
0.708
1.323
2.072
2.706
3.841
5.024
6.635
7.879
10.828
在對(duì)人們的休閑方式的一次調(diào)查中,共調(diào)查了120人,其中女性65人,男性55人。女性中有40人主要的休閑方式是看電視,另外25人主要的休閑方式是運(yùn)動(dòng);男性中有20人主要的休閑方式是看電視,另外35人主要的休閑方式是運(yùn)動(dòng)。
(1)根據(jù)以上數(shù)據(jù)建立一個(gè)2×2的列聯(lián)表;(2)能夠以的把握認(rèn)為性別與休閑方式有關(guān)系,為什么?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

某投資公司在2010年年初準(zhǔn)備將1000萬(wàn)元投資到“低碳”項(xiàng)目上,現(xiàn)有兩個(gè)項(xiàng)目供選擇:
項(xiàng)目一:新能源汽車.據(jù)市場(chǎng)調(diào)研,投資到該項(xiàng)目上,到年底可能獲利,也可能虧損,且這兩種情況發(fā)生的概率分別為;
項(xiàng)目二:通信設(shè)備.據(jù)市場(chǎng)調(diào)研,投資到該項(xiàng)目上,到年底可能獲利,可能虧損,也可能不賠不賺,且這三種情況發(fā)生的概率分別為、
(Ⅰ)針對(duì)以上兩個(gè)投資項(xiàng)目,請(qǐng)你為投資公司選擇一個(gè)合理的項(xiàng)目,并說(shuō)明理由;
(Ⅱ)若市場(chǎng)預(yù)期不變,該投資公司按照你選擇的項(xiàng)目長(zhǎng)期投資(每一年的利潤(rùn)和本金繼續(xù)用作投資),問(wèn)大約在哪一年的年底總資產(chǎn)(利潤(rùn)+本金)可以翻一番?
(參考數(shù)據(jù):,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

隨機(jī)抽取某中學(xué)甲,乙兩班各10名同學(xué),測(cè)量他們的身高(單位:cm),獲得身高數(shù)據(jù)的莖葉圖如圖 ,則下列關(guān)于甲,乙兩班這10名同學(xué)身高的結(jié)論正確的是    (   )   
 
A. 甲班同學(xué)身高的方差較大
B.甲班同學(xué)身高的平均值較大
C.甲班同學(xué)身高的中位數(shù)較大
D. 甲班同學(xué)身高在175以上的人數(shù)較多
                    

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

某研究小組為了研究中學(xué)生的身體發(fā)育情況,在某學(xué)校隨機(jī)抽出20名15至16周歲的男生,將他們的身高和體重制成2×2的列聯(lián)表,根據(jù)列聯(lián)表的數(shù)據(jù),可以有       %的把握認(rèn)為該學(xué)校15至16周歲的男生的身高和體重之間有關(guān)系。
        
超重
不超重
合計(jì)
偏高
4
1
5
不偏高
3
12
15
合計(jì)
7
13
20
獨(dú)立性檢驗(yàn)臨界值表
P(K2≥k0)
0.025
0.010
0.005
0.001
k0
5.024
6.635
7.879
10.828
        獨(dú)立性檢驗(yàn)隨機(jī)變量值的計(jì)算公式:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

某市近10年的煤氣消耗量與使用煤氣戶數(shù)的歷史資料如下:
年 份
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
x用戶(萬(wàn)戶)
1
1.2
1.6
1.8
2
2.5
3.2
4
4.2
4.5
y (百萬(wàn)立米)
6
7
9.8
12
12.1
14.5
20
24
25.4
27.5
(1)檢驗(yàn)是否線性相關(guān);(2)求回歸方程;
(3)若市政府下一步再擴(kuò)大5千煤氣用戶,試預(yù)測(cè)該市煤氣消耗量將達(dá)到多少.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在500個(gè)人身上試驗(yàn)?zāi)撤N血清預(yù)防感冒的作用,把一年中的記錄與另外500個(gè)未用血清的人作比較,結(jié)果如下表所示:
 
未感冒
感冒
總計(jì)
試驗(yàn)過(guò)
252
248
500
未用過(guò)
224
276
500
總計(jì)
476
524
1000
 
試畫出列聯(lián)表的條形圖,并通過(guò)圖形判斷這種血清能否起到預(yù)防感冒的作用?并進(jìn)行獨(dú)立性檢驗(yàn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

本題滿分12分)
某超市為促銷商品,特舉辦“購(gòu)物有獎(jiǎng)100%中獎(jiǎng)”活動(dòng),凡消費(fèi)者在該超市購(gòu)物滿10元,可獲得一次搖獎(jiǎng)機(jī)會(huì),購(gòu)物滿20元,可獲得兩次搖獎(jiǎng)機(jī)會(huì),以此類推,搖獎(jiǎng)機(jī)結(jié)構(gòu)如圖,將一個(gè)半徑適當(dāng)?shù)男∏蚍湃肴鐖D所示的容器最上方的入口處,小球?qū)⒆杂上侣,小球在下落過(guò)程中,將3次遇到黑色障礙物,最后落入A袋或B袋中,落入A袋為一等獎(jiǎng),獎(jiǎng)金2元,落入B袋為二等獎(jiǎng),獎(jiǎng)金1元,已知小球每次遇到黑色障礙物時(shí),向左、右兩邊下落的概率都是

(I)求搖獎(jiǎng)兩次均獲得一等獎(jiǎng)的概率;
(II)某消費(fèi)者購(gòu)物滿20元,搖獎(jiǎng)后所得獎(jiǎng)金為X元,試求X的分布列與期望;
(III)若超市同時(shí)舉行購(gòu)物八八折讓利于消費(fèi)者活動(dòng)(打折后不能再參加搖獎(jiǎng)),某消費(fèi)者剛好消費(fèi)20元,請(qǐng)問(wèn)他是選擇搖獎(jiǎng)還是選擇打折比較劃算。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

為了研究子女吸煙與父母吸煙的關(guān)系,調(diào)查了青少年及其家長(zhǎng),得數(shù)據(jù)如下
 
父母吸煙
父母不吸煙
合計(jì)
子女吸煙
237
83
320
子女不吸煙
678
522
1200
合計(jì)
915
605
1520
則下列結(jié)論較準(zhǔn)確的一個(gè)是                                                                        (  )
A.子女吸煙與父母吸煙無(wú)關(guān)
B.有的把握說(shuō)子女吸煙與父母吸煙有關(guān)
C.有的把握說(shuō)子女吸煙與父母吸煙有關(guān)
D.有的把握說(shuō)子女吸煙與父母吸煙有關(guān)

查看答案和解析>>

同步練習(xí)冊(cè)答案