分已知函數(shù)為大于零的常數(shù)。
(1)若函數(shù)內(nèi)單調(diào)遞增,求a的取值范圍;
(2)求函數(shù)在區(qū)間[1,2]上的最小值。
(1)
(2)在[1,2]上的最小值為
①當(dāng)
②當(dāng)時(shí),
③當(dāng)

試題分析:解:   .2分
(1)由已知,得上恒成立,
上恒成立
當(dāng)
   .6分
(2)當(dāng)時(shí),
在(1,2)上恒成立,這時(shí)在[1,2]上為增函數(shù)
 
當(dāng)在(1,2)上恒成立,這時(shí)在[1,2]上為減函數(shù)

當(dāng)時(shí),令 
 
  
綜上,在[1,2]上的最小值為
①當(dāng)
②當(dāng)時(shí),
③當(dāng)  12分
點(diǎn)評(píng):主要是考查了導(dǎo)數(shù)的符號(hào)與函數(shù)單調(diào)性關(guān)系的運(yùn)用,以及利用分類(lèi)討論思想來(lái)得到最值,屬于基礎(chǔ)題。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

.可導(dǎo)函數(shù)在閉區(qū)間的最大值必在(     )取得
A.極值點(diǎn)B.導(dǎo)數(shù)為0的點(diǎn)
C.極值點(diǎn)或區(qū)間端點(diǎn)D.區(qū)間端點(diǎn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿(mǎn)分共12分)已知函數(shù),曲線在點(diǎn)處切線方程為。
(Ⅰ)求的值;
(Ⅱ)討論的單調(diào)性,并求的極大值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)
(Ⅰ)求的單調(diào)區(qū)間;
(Ⅱ)求在區(qū)間上的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

函數(shù)的最大值為(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

設(shè)函數(shù)在(,+)內(nèi)有意義.對(duì)于給定的正數(shù)K,已知函數(shù),取函數(shù)=.若對(duì)任意的,+),恒有=,則K的最小值為            .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù);
(1)討論的單調(diào)性;
(2)若上的最大值為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)f(x)=ln(1+x)-.
(1)求f(x)的極小值;   (2)若a、b>0,求證:lna-lnb≥1-.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

函數(shù)的零點(diǎn)的個(gè)數(shù)為      .

查看答案和解析>>

同步練習(xí)冊(cè)答案