橢圓
x2
a2
+
y2
b2
=1(a>b>0)的兩個焦點及其與坐標軸的一個交點正好是一個等邊三角形的三個頂點,且橢圓上的點到焦點距離的最小值為
3
,求橢圓的方程.
考點:橢圓的簡單性質(zhì)
專題:計算題,圓錐曲線的定義、性質(zhì)與方程
分析:利用條件,可得
3
2
×2c
=b,a-c=
3
,求出a,b,即可求橢圓的方程.
解答: 解:∵橢圓
x2
a2
+
y2
b2
=1(a>b>0)的兩個焦點及其與坐標軸的一個交點正好是一個等邊三角形的三個頂點,
3
2
×2c
=b,
∵橢圓上的點到焦點距離的最小值為
3

∴a-c=
3
,
∴a=2
3
,b=3,
∴橢圓的方程為
x2
12
+
y2
9
=1
點評:本題考查橢圓的方程,考查學生的計算能力,比較基礎.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=ln(ax+1)+
2
x+1
-1(x≥0,a>0).
(1)若f(x)在x=1處取得極值,求a的值;
(2)求f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=ln(x+1)+ax2-x,a∈R.
(Ⅰ)當a=
1
4
時,求函數(shù)y=f(x)的極值;
(Ⅱ)是否存在實數(shù)b∈(0,1),使得當x∈(-1,b]時,函數(shù)f(x)的最大值為f(b)?若存在,求實數(shù)a的取值范圍,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

各項都為正數(shù)的數(shù)列{an}滿足a1=1,an+12-an2=1.
(1)求數(shù)列{an}的通項公式;
(2)求數(shù)列{
1
an+an+1
}的前n項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=
lnx+k
ex
(k為常數(shù)),且y=f(x)在x=1處取極值
(1)求k的值;
(2)求f(x)的單調(diào)區(qū)間;
(3)設g(x)=(x2+x)f′(x),證明對任意x>0,g(x)<1+e-2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

受金融危機的影響,某旅游公司的經(jīng)濟效益出現(xiàn)了一定程度的滑坡.現(xiàn)需要對某一景點進行改造升級,以提高旅游增加值.經(jīng)過市場調(diào)查發(fā)現(xiàn),旅游增加值y(萬元)與投入成本x(萬元)之間滿足:y=
51
50
x-ax2-ln
x
10
x
2x-12
∈[t,+∞),其中t為大于
1
2
的常數(shù),且當投入成本為10萬元時,旅游增加值為9.2萬元.
(1)求a的值和投入成本x的取值范圍;
(2)當投入成本為多少萬元時,旅游增加值y取得最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的左右焦點分別為F1,F(xiàn)2,點A在雙曲線上,且AF2⊥x軸,若
|AF1|
|AF2|
=
5
3
,則雙曲線的離心率等于
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知
a
+
b
=2
i
-8
j
+
k
,
a
-
b
=-8
i
+16
j
-3
k
(i,
j
,
k
兩兩互相垂直),那么
a
b
=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在等比數(shù)列{an}中,已知a1=2,q=2,an=16,則項數(shù)n=
 

查看答案和解析>>

同步練習冊答案