【題目】設(shè)等比數(shù)列的前項(xiàng)和為;數(shù)列滿足.
(1)求數(shù)列的通項(xiàng)公式;
(2)①試確定的值,使得數(shù)列為等差數(shù)列;
②在①結(jié)論下,若對每個(gè)正整數(shù),在與之間插入個(gè)2,得到一個(gè)新數(shù)列,設(shè)是數(shù)列的前項(xiàng)和,試求滿足的所有正整數(shù).
【答案】(1);(2)見解析
【解析】分析:(1)求出數(shù)列的首項(xiàng)和公比,即可求數(shù)列的通項(xiàng)公式;(2)①求出數(shù)列的前幾項(xiàng),根據(jù)等差數(shù)列的性質(zhì)建立方程即可求出;②討論的取值,根據(jù)的關(guān)系進(jìn)行求解即可.
詳解:(1)當(dāng)時(shí),,,
則公比,則
(2)①當(dāng)時(shí),得 時(shí),得;時(shí),得,
則由,得.
而當(dāng)時(shí),由得.
由,知此時(shí)數(shù)列為等差數(shù)列.
②由題意知,
則當(dāng)時(shí),,不合題意,舍去;
當(dāng)時(shí),,所以成立;
當(dāng)時(shí),若,則,不合題意,舍去;從而必是數(shù)列中的某一項(xiàng),
則:
又,所以 ,
即,所以
因?yàn)?/span>為奇數(shù),而為偶數(shù),所以上式無解.
即當(dāng)時(shí),
綜上所述,滿足題意的正整數(shù)僅有.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某種汽車購買時(shí)費(fèi)用為16.9萬元,每年應(yīng)交付保險(xiǎn)費(fèi)、汽油費(fèi)共0.9萬元,汽車的維修保養(yǎng)費(fèi)為:第一年0.2萬元,第二年0.4萬元,第三年0.6萬元,……依等差數(shù)列逐年遞增.
(1)求該車使用了3年的總費(fèi)用(包括購車費(fèi)用)為多少萬元?
(2)設(shè)該車使用年的總費(fèi)用(包括購車費(fèi)用)為),試寫出的表達(dá)式;
(3)求這種汽車使用多少年報(bào)廢最合算(即該車使用多少年平均費(fèi)用最少).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐 中, 底面 , 是直角梯形, , ,且 , 是 的中點(diǎn).
(1)求證:平面 平面 ;
(2)若二面角 的余弦值為 ,求直線 與平面 所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)M=( ﹣1)( ﹣1)( ﹣1)滿足a+b+c=1(其中a>0,b>0,c>0),則M的取值范圍是( )
A.[0, )
B.[ ,1)
C.[1,8)
D.[8,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于的方程的兩根之和等于兩根之積的一半,則一定是( )
A. 直角三角形 B. 等腰三角形 C. 鈍角三角形 D. 等邊三角形
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知一個(gè)四棱錐的正視圖和側(cè)視圖為兩個(gè)完全相同的等腰直角三角形(如圖示),腰長為1,則該四棱錐的體積為( )
(A) (B) (C) (D)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】執(zhí)行如圖所示的程序框圖,設(shè)當(dāng)箭頭a指向①處時(shí),輸出的S的值為m,當(dāng)箭頭a指向②處時(shí),輸出的S的值為n,則m+n=
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com