已知cos(x+y)cosy+sin(x+y)siny=
4
5
,求tanx的值.
考點(diǎn):兩角和與差的正弦函數(shù)
專題:計算題,三角函數(shù)的求值
分析:由cos(x+y)cosy+sin(x+y)siny=cos((x+y)-y)=cosx=
4
5
,可得sinx=±
3
5
,從而可求得tanx=
sinα
cosα
=±
3
4
解答: 解:∵cos(x+y)cosy+sin(x+y)siny=cos((x+y)-y )=cosx=
4
5
,
∴sinx=±
1-cos2α
=±
3
5
,
∴tanx=
sinα
cosα
=±
3
4
點(diǎn)評:本題主要考查了兩角和與差的正弦函數(shù)公式的應(yīng)用,屬于基本知識的考查.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓 C:
x2
a2
+
y2
b2
=1,(a>b>0)上一點(diǎn)P到它的兩個焦點(diǎn)F1(左),F(xiàn)2(右)的距離的和是2
2
,短軸長為2
(1)求橢圓C的標(biāo)準(zhǔn)方程與離心率的值.
(2)若直線PF1的傾斜角為450,求直線PF1被橢圓C截的弦長的長度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
(sinx-cosx)•sin2x
sinx

(1)求f(x)的定義域及最小正周期;
(2)若x∈(0,π),求f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知三棱錐S-ABC的所有頂點(diǎn)都在球O的球面上,SC為球O的直徑,且SC⊥OA,SC⊥OB,△OAB為等邊三角形,三棱錐S-ABC的體積為
4
3
3
,求球O的表面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)是R上的偶函數(shù),且在[0,+∞)上遞增,若f(
1
2
)=0,f(log 
1
4
x)<0,那么x的取值范圍是(  )
A、
1
2
<x<2
B、x>2
C、
1
2
<x<1
D、x>2或
1
2
<x<1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

計算:
a-2b-3[(-3a)-1b2]
(6a)-4b-2
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若方程cosx+cos(x+
π
3
)=
3
m3-2
3
有實(shí)根,則m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)一正方形邊長為1,取各邊的中點(diǎn)連成一個新的正方形,記其面積為a1,然后在得到的新正方形中,再連接各邊中點(diǎn),又得到一個新正方形,記其面積為a2,按此方法依次做下去…
(1)求a1和a2;
(2)記an為第n次得到的正方形面積,寫出關(guān)于an的表達(dá)式(不必證明);
(3)求經(jīng)過n次后所得n個正方形的面積之和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

計算下列各式的值:
(1)2
2
42
82

(2)(
3
-
2
0+(
1
2
-2+125
2
3

(3)
4ab2
3a2b
(a>0,b>0)
(4)lg25+lg40
(5)lg5-lg50
(6)log34+log38-log3
32
9

(7)log2(log232-log2
3
4
+log26)
(8)
1
6
log264+
1
2
log864+log381
(9)2log525+3log264-8lg1-log88
(10)loga
na
+loga
1
an
+loga
1
na

查看答案和解析>>

同步練習(xí)冊答案