【題目】從集合的所有非空子集中,等可能地取出個.

(1)若,求所取子集的元素既有奇數(shù)又有偶數(shù)的概率;

(2)若,記所取子集的元素個數(shù)之差為,求的分布列及數(shù)學期望

【答案】(1) .

(2) 分布列見解析,.

【解析】分析:(1)集合的非空子集數(shù)為,其中非空子集的元素全為

奇數(shù)的子集數(shù)為,全為偶數(shù)的子集數(shù)為由古典概型概率公式可得結果;(2)當時,的所有可能取值為,由組合知識,利用古典概型概率公式可得隨機變量對應的概率,從而可得分布列,進而利用期望公式可得其數(shù)學期望

詳解(1)當時,記事件:“所取子集的元素既有奇數(shù)又有偶數(shù)”.

則集合的非空子集數(shù)為,其中非空子集的元素全為

奇數(shù)的子集數(shù)為,全為偶數(shù)的子集數(shù)為,

所以

(2)當時,的所有可能取值為

所以的數(shù)學期望.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】設定義域為R的函數(shù)

(1)在平面直角坐標系中作出函數(shù)fx)的圖象,并指出fx)的單調(diào)區(qū)間(不需證明);

2)若方程fx+5a0有兩個解,求出a的取值范圍(不需嚴格證明,簡單說明即可);

3)設定義域為R的函數(shù)gx)為偶函數(shù),且當x≥0時,gx)=fx),求gx)的解析式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的右焦點與拋物線的焦點重合,且橢圓的離心率為

(Ⅰ)求橢圓的方程;

(Ⅱ)設是橢圓的右頂點,過點作兩條直線分別與橢圓交于另一點,若直線的斜率之積為,求證:直線恒過一個定點,并求出這個定點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的左頂點,右焦點分別為,右準線為,

(1)若直線上不存在點,使為等腰三角形,求橢圓離心率的取值范圍;

(2)在(1)的條件下,當取最大值時,點坐標為,設是橢圓上的三點,且,求:以線段的中心為原點,過兩點的圓方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某互聯(lián)網(wǎng)公司為了確定下一季度的前期廣告投入計劃,收集了近個月廣告投入量單位:萬元)和收益單位:萬元)的數(shù)據(jù)如下表

月份

廣告投入量

收益

他們分別用兩種模型①,分別進行擬合,得到相應的回歸方程并進行殘差分析,得到如圖所示的殘差圖及一些統(tǒng)計量的值

Ⅰ)根據(jù)殘差圖,比較模型①②的擬合效果,應選擇哪個模型?并說明理由;

Ⅱ)殘差絕對值大于的數(shù)據(jù)被認為是異常數(shù)據(jù),需要剔除

。┨蕹惓(shù)據(jù)后求出(Ⅰ)中所選模型的回歸方程;

ⅱ)若廣告投入量時,該模型收益的預報值是多少?

附:對于一組數(shù)據(jù),,……,,其回歸直線的斜率和截距的最小二乘估計分別為

.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,已知點到拋物線焦點的距離為

(1)求的值;

(2) 是拋物線上異于的兩個不同點,過軸的垂線,與直線交于點,過軸的垂線,與直線交于點,過軸的垂線,與直線分別交于點

求證:①直線的斜率為定值;

是線段的中點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了解本屆高二學生對文理科的選擇與性別是否有關,現(xiàn)隨機從高二的全體學生中抽取了若干名學生,據(jù)統(tǒng)計,男生35人,理科生40人,理科男生30人,文科女生15人。

(1)完成如下2×2列聯(lián)表,判斷是否有99.9%的把握認為本屆高二學生“對文理科的選擇與性別有關”?

男生

女生

合計

文科

理科

合計

(2)已采用分層抽樣的方式從樣本的所有女生中抽取了5人,現(xiàn)從這5人中隨機抽取2人參加座談會,求抽到的2人恰好一文一理的概率。

0.15

0.10

0.05

0.01

0.005

0.001

k

2.072

2.706

3.841

6.635

7.879

10.828

(參考公式,其中為樣本容量)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐中,底面為菱形,,,點的中點.

(1)證明:;

(2)若點為線段的中點,平面平面,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)當時,求證:上是單調(diào)遞減函數(shù);

2)若函數(shù)有兩個正零點,求的取值范圍,并證明:.

查看答案和解析>>

同步練習冊答案