已知凼數(shù)f(x)=sin2x+2sinxcosx-cos2x,x∈R,
(1)求凼數(shù)f(x)的最小正周期
(2)求凼數(shù)f(x)的單調(diào)遞減區(qū)間.
考點(diǎn):三角函數(shù)中的恒等變換應(yīng)用,三角函數(shù)的周期性及其求法,正弦函數(shù)的圖象
專(zhuān)題:三角函數(shù)的求值,三角函數(shù)的圖像與性質(zhì)
分析:(1)首先通過(guò)三角函數(shù)關(guān)系式的恒等變換把函數(shù)關(guān)系式變形成正弦型函數(shù),進(jìn)一步求出正弦型函數(shù)的周期.
(2)利用(1)求出的函數(shù)關(guān)系式,進(jìn)一步利用整體思想求出函數(shù)的單調(diào)遞減區(qū)間.
解答: 解:(1)f(x)=sin2x+2sinxcosx-cos2x
=sin2x-cos2x
=
2
sin(2x-
π
4
)
,
所以:T=
2
;
(2)由于f(x)=
2
sin(2x-
π
4
)

令:
π
2
+2kπ≤2x-
π
4
≤2kπ+
2
(k∈Z),
解得:
8
+kπ≤x≤kπ+
8
(k∈Z),
所以:函數(shù)的單調(diào)遞減區(qū)間為:[
8
+kπ,kπ+
8
](k∈Z).
點(diǎn)評(píng):本題考查的知識(shí)要點(diǎn):三角函數(shù)關(guān)系式的恒等變換,正弦型函數(shù)周期公式的應(yīng)用,正弦型函數(shù)單調(diào)區(qū)間的確定,屬于基礎(chǔ)題型.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=lnx,g(x)=
1
2
x2+a(a為常數(shù)),直線l與函數(shù)f(x)、g(x)的圖象都相切,且l與函數(shù)f(x)的圖象的切點(diǎn)的橫坐標(biāo)為l.
(Ⅰ)求直線l的方程及a的值;
(Ⅱ)當(dāng)k>0時(shí),試討論方程f(1-x2)-g(x)=k的解的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=g(x)+x2,曲線y=g(x)在點(diǎn)(1,g(1))處的切線方程為y=2x+1,則曲線y=f(x)在點(diǎn)(1,f(1))處切線的斜率為( 。
A、2
B、4
C、-
1
4
D、-
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an},滿(mǎn)足a1=2,an+1=
2an
an+2

(1)數(shù)列{
1
an
}是否為等差數(shù)列?說(shuō)明理由.
(2)求{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ax2+(2a+1)x+1-3a(a≠0),若f(lgx)=0的兩根之積為10,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在四棱錐P-ABCD中,PD⊥平面ABCD,E,F(xiàn)分別為AB,PC的中點(diǎn),PD=DC=BC=1,AB=2,AB∥DC,∠BCD=90°.
(1)求證:PC⊥平面DEF;
(2)求點(diǎn)A到平面PBD的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=x2+mln(x+1).
(1)若函數(shù)f(x)是定義域上的單調(diào)函數(shù),求實(shí)數(shù)m的取值范圍;
(2)若m=-1,試比較當(dāng)x∈(0,+∞)時(shí),f(x)與x3的大。
(3)證明:對(duì)任意的正整數(shù)n,不等式e0+e-1×4+e-2×9+…+e (1-n)n2
n(n+3)
2
成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=ax2+(a+1)x+(a-3),若它的圖象過(guò)原點(diǎn),則a=
 
.關(guān)于y軸對(duì)稱(chēng),則a=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

過(guò)邊長(zhǎng)為2的正方形中心作直線l將正方形分為兩個(gè)部分,將其中的一個(gè)部分沿直線l翻折到另一個(gè)部分上.則兩個(gè)部分圖形中不重疊的面積的最大值為( 。
A、2
B、2(3-
2
C、4(2-
2
D、4(3-2
2

查看答案和解析>>

同步練習(xí)冊(cè)答案