已知對任意平面向量
AB
=(x,y),把
AB
繞其起點(diǎn)沿逆時(shí)針方向旋轉(zhuǎn)θ角得到向量
AP
=(xcosθ-ysinθ,xsinθ+ycosθ),叫做把點(diǎn)B繞點(diǎn)A逆時(shí)針方向旋轉(zhuǎn)θ角得到點(diǎn)P.設(shè)平面內(nèi)曲線C上的每一點(diǎn)繞原點(diǎn)沿逆時(shí)針方向旋轉(zhuǎn)
π
4
后得到點(diǎn)的軌跡是曲線x2-y2=2,則原來曲線C的方程是
 
分析:設(shè)平面內(nèi)曲線C上的點(diǎn)P(x,y),根據(jù)把點(diǎn)B繞點(diǎn)A逆時(shí)針方向旋轉(zhuǎn)θ角得到點(diǎn)P的定義,可求出其繞原點(diǎn)沿逆時(shí)針方向旋轉(zhuǎn)
π
4
后得到點(diǎn)P′(
2
2
(x-y),
2
2
(x+y)
),另由點(diǎn)P′在曲線x2-y2=2上,代入該方程即可求得原來曲線C的方程.
解答:解:設(shè)平面內(nèi)曲線C上的點(diǎn)P(x,y),則其繞原點(diǎn)沿逆時(shí)針方向旋轉(zhuǎn)
π
4
后得到點(diǎn)P′(
2
2
(x-y),
2
2
(x+y)
),
∵點(diǎn)P′在曲線x2-y2=2上,
(
2
2
(x-y) )
2-(
2
2
(x+y))
2=2,
整理得xy=-1.
故答案為:xy=-1.
點(diǎn)評:此題是基礎(chǔ)題.考查向量在幾何中的應(yīng)用以及圓錐曲線的軌跡問題,同時(shí)考查學(xué)生的閱讀能力和分析解決問題的能力以及計(jì)算能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知對任意平面向量
AB
=(x,y),把
AB
繞其起點(diǎn)沿逆時(shí)針方向旋轉(zhuǎn)θ角得到向量
AP
=(xcosθ-ysinθ,xsinθ+ycosθ),叫做把點(diǎn)B繞點(diǎn)A逆時(shí)針方向旋轉(zhuǎn)θ角得到點(diǎn)P.已知平面內(nèi)點(diǎn)A(1,2),B(1+
2
,2-2
2
);把點(diǎn)B繞A點(diǎn)沿順時(shí)針方向旋轉(zhuǎn)
π
4
后得到點(diǎn)P,則P點(diǎn)坐標(biāo)是
(0,-1)
(0,-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知對任意平面向量
AB
=(x,y)
,將
AB
繞其起點(diǎn)沿順時(shí)針方向旋轉(zhuǎn)θ角得到向量
AP
=(xcosθ+ysinθ,-xsinθ+ycosθ)
,叫做將點(diǎn)B繞點(diǎn)A沿順時(shí)針方向旋轉(zhuǎn)θ角得到點(diǎn)P.
(1)已知平面內(nèi)點(diǎn)A(1,2),點(diǎn)B(1+
2
,2-2
2
)
,將點(diǎn)B繞點(diǎn)A沿順時(shí)針方向旋轉(zhuǎn)
π
4
得到點(diǎn)P,求點(diǎn)P的坐標(biāo);
(2)設(shè)平面內(nèi)曲線3x2+3y2+2xy=4上的每一點(diǎn)繞坐標(biāo)原點(diǎn)O沿順時(shí)針方向旋轉(zhuǎn)
π
4
得到的點(diǎn)的軌跡是曲線C,求曲線C的方程;
(3)過(2)中曲線C的焦點(diǎn)的直線l與曲線C交于不同的兩點(diǎn)A、B,當(dāng)
OA
OB
=0
時(shí),求△AOB的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知對任意平面向量
AB
=(x,y),我們把
AB
繞其起點(diǎn)A沿逆時(shí)針方向旋轉(zhuǎn)θ角得到向量
AP
=(xcosθ-ysinθ,xsinθ+ycosθ),稱為
AB
逆旋θ角到
AP

(1)把向量
a
=(2,-1)逆旋
π
3
角到
b
,試求向量
b

(2)設(shè)平面內(nèi)函數(shù)y=f (x)圖象上的每一點(diǎn)M,把
OM
逆旋
π
4
角到
ON
后(O為坐標(biāo)原點(diǎn)),得到的N點(diǎn)的軌跡是曲線x2-y2=3,當(dāng)函數(shù)F (x)=λ f (x)-|x-1|+2有三個(gè)不同的零點(diǎn)時(shí),求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年浙江省臺州市四校高三第一次聯(lián)考理科數(shù)學(xué)試卷 題型:填空題

已知對任意平面向量=(x,y),把繞其起點(diǎn)沿逆時(shí)針方向旋轉(zhuǎn)角得到向量,叫做把點(diǎn)B繞點(diǎn)A逆時(shí)針方向旋轉(zhuǎn)角得到點(diǎn)P. 設(shè)平面內(nèi)曲線C上的每一點(diǎn)繞原點(diǎn)沿逆時(shí)針方向旋轉(zhuǎn)后得到點(diǎn)的軌跡是曲線,則原來曲線C的方程是____▲_____

 

查看答案和解析>>

同步練習(xí)冊答案