【題目】四棱錐中,面,底面是菱形,且,,過點作直線,為直線上一動點.
(1)求證:;
(2)當面面時,求三棱錐的體積.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】5名男生4名女生站成一排,求滿足下列條件的排法:
(1)女生都不相鄰有多少種排法?
(2)男生甲、乙、丙排序一定(只考慮位置的前后順序),有多少種排法?
(3)男甲不在首位,男乙不在末位,有多少種排法?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知一家公司生產(chǎn)某種品牌服裝的年固定成本為萬元,每生產(chǎn)千件需另投入萬元.設(shè)該公司一年內(nèi)共生產(chǎn)該品牌服裝千件并全部銷售完,每千件的銷售收入為萬元,且.
(1)寫出年利潤(萬元)關(guān)于年產(chǎn)量(千件)的函數(shù)解析式;
(2)年產(chǎn)量為多少千件時,該公司在這一品牌服裝的生產(chǎn)中所獲得利潤最大?(注:年利潤=年銷售收入-年總成本)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)為調(diào)查該校學(xué)生每周參加社會實踐活動的情況,隨機收集了若干名學(xué)生每周參加社會實踐活動的時間(單位:小時),將樣本數(shù)據(jù)繪制如圖所示的頻率分布直方圖,且在[0,2)內(nèi)的學(xué)生有1人.
(1)求樣本容量,并根據(jù)頻率分布直方圖估計該校學(xué)生每周參加社會實踐活動時間的平均值;
(2)將每周參加社會實踐活動時間在[4,12]內(nèi)定義為“經(jīng)常參加社會實踐”,參加活動時間在[0,4)內(nèi)定義為“不經(jīng)常參加社會實踐”.已知樣本中所有學(xué)生都參加了青少年科技創(chuàng)新大賽,有13人成績等級為“優(yōu)秀”,其余成績?yōu)椤耙话恪,其中成績?yōu)秀的13人種“經(jīng)常參加社會實踐活動”的有12人.請將2×2列聯(lián)表補充完整,并判斷能否在犯錯誤的概率不超過0.05的前提下認為青少年科技創(chuàng)新大賽成績“優(yōu)秀”與經(jīng)常參加社會實踐活動有關(guān);
(3)在(2)的條件下,如果從樣本中“不經(jīng)常參加社會實踐”的學(xué)生中隨機選取兩人參加學(xué)校的科技創(chuàng)新班,求其中恰好一人成績優(yōu)秀的概率.
參考公式和數(shù)據(jù):
.
0.10 | 0.05 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)若,判斷函數(shù)的奇偶性,并加以證明;
(2)若函數(shù)在上是增函數(shù),求實數(shù)的取值范圍;
(3)若存在實數(shù)使得關(guān)于的方程有三個不相等的實數(shù)根,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知的直角頂點在軸上,點為斜邊的中點,且平行于軸.
(Ⅰ)求點的軌跡方程;
(Ⅱ)設(shè)點的軌跡為曲線,直線與的另一個交點為.以為直徑的圓交軸于即此圓的圓心為,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某廠有4臺大型機器,在一個月中,一臺機器至多出現(xiàn)1次故障,且每臺機器是否出現(xiàn)故障是相互獨立的,出現(xiàn)故障時需1名工人進行維修,每臺機器出現(xiàn)故障需要維修的概率為.
(1)若出現(xiàn)故障的機器臺數(shù)為,求的分布列;
(2) 該廠至少有多少名工人才能保證每臺機器在任何時刻同時出現(xiàn)故障時能及時進行維修的概率不少于90%?
(3)已知一名工人每月只有維修1臺機器的能力,每月需支付給每位工人1萬元的工資,每臺機器不出現(xiàn)故障或出現(xiàn)故障能及時維修,就使該廠產(chǎn)生5萬元的利潤,否則將不產(chǎn)生利潤,若該廠現(xiàn)有2名工人,求該廠每月獲利的均值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為, 為焦點是的拋物線上一點, 為直線上任一點, 分別為橢圓的上,下頂點,且三點的連線可以構(gòu)成三角形.
(1)求橢圓的方程;
(2)直線與橢圓的另一交點分別交于點,求證:直線過定點.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com