(2013•永州一模)提高大橋的車輛通行能力可改善整個(gè)城市的交通狀況.一般情況下,大橋上的車流速度v(單位:千米/小時(shí))是車流密度x(單位:輛/千米)的函數(shù).當(dāng)車流密度不超過50輛/千米時(shí),車流速度為30千米/小時(shí).研究表明:當(dāng)50<x≤200時(shí),車流速度v與車流密度x滿足v(x)=40-
k
250-x
.當(dāng)橋上的車流密度達(dá)到200輛/千米時(shí),造成堵塞,此時(shí)車流速度為0千米/小時(shí).
(Ⅰ)當(dāng)0<x≤200時(shí),求函數(shù)v(x)的表達(dá)式;
(Ⅱ)當(dāng)車流密度x為多大時(shí),車流量(單位時(shí)間內(nèi)通過橋上觀測點(diǎn)的車輛數(shù),單位:輛/小時(shí))f(x)=x•v(x)可以達(dá)到最大,并求出最大值.(精確到個(gè)位,參考數(shù)據(jù)
5
≈2.236
分析:(I)根據(jù)題意,函數(shù)v(x)表達(dá)式為分段函數(shù)的形式,關(guān)鍵在于求函數(shù)v(x)在50≤x≤200時(shí)的表達(dá)式,根據(jù)分式函數(shù)表達(dá)式的形式,用待定系數(shù)法可求得;
(II)先在區(qū)間(0,50]上,函數(shù)f(x)為增函數(shù),得最大值為f(50)=1500,然后在區(qū)間[50,200]上用基本不等式求出函數(shù)f(x)的最大值,用基本不等式取等號的條件求出相應(yīng)的x值,兩個(gè)區(qū)間內(nèi)較大的最大值即為函數(shù)在區(qū)間(0,200]上的最大值.
解答:解:(I)由題意:當(dāng)0<x≤50時(shí),v(x)=30;
當(dāng)50≤x≤200時(shí),由于v(x)=40-
k
250-k
,
再由已知可知,當(dāng)x=200時(shí),v(0)=0,代入解得k=2000.
故函數(shù)v(x)的表達(dá)式為v(x)=
30,
 0<x≤50
40-
2000
250-x
,50<x≤200
.…(6分)
(II)依題意并由(I)可得f(x)=
30x,
 0<x≤50
40x-
2000x
250-x
,50<x≤200

當(dāng)0≤x≤50時(shí),f(x)=30x,當(dāng)x=50時(shí)取最大值1500.
當(dāng)50<x≤200時(shí),f(x)=40x-
2000x
250-x
=12000-[40(250-x)+
500000
250-x
]
≤12000-2
40(250-x)×
500000
250-x
=12000-4000
5
≈12000-4000×2.236=3056.
取等號當(dāng)且僅當(dāng)40(250-x)=
500000
250-x
,即x=250-50
5
≈138時(shí),f(x)取最大值.
(這里也可利用求導(dǎo)來求最大值)
綜上,當(dāng)車流密度為138 輛/千米時(shí),車流量可以達(dá)到最大,最大值約為3056輛/小時(shí).…(14分)
點(diǎn)評:本題主要考查函數(shù)、最值等基礎(chǔ)知識,同時(shí)考查運(yùn)用數(shù)學(xué)知識解決實(shí)際問題的能力,屬于中等題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•永州一模)已知函數(shù)f(x)=mlnx+
1
x
,(其中m為常數(shù))
(1)試討論f(x)在區(qū)間(0,+∞)上的單調(diào)性;
(2)令函數(shù)h(x)=f(x)+
1
m
lnx
-x.當(dāng)m∈[2,+∞)時(shí),曲線y=h(x)上總存在相異兩點(diǎn)P(x1,f(x1))、Q(x2,f(x2)),使得過P、Q點(diǎn)處的切線互相平行,求x1+x2的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•永州一模)已知A,B是圓C(為圓心)上的兩點(diǎn),|
AB
|=2,則
AB
AC
=
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•永州一模)設(shè)集合A={x|-1<x<2},B={x|x2≤1},則A∩B=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•永州一模)“x≠3”是“|x-3|>0”的(  )

查看答案和解析>>

同步練習(xí)冊答案