【題目】如圖,在四棱錐中,平面,,,,.過點做四棱錐的截面,分別交,,于點,已知,為的中點.
(Ⅰ)求證:平面;
(Ⅱ)求與平面所成角的正弦值.
【答案】(Ⅰ)證明見解析;(Ⅱ).
【解析】
(Ⅰ)在上取點,且滿足,連接,,可證是平行四邊形,即可證明結論;
(Ⅱ)建立空間直角坐標系,求平面的法向量,利用線面角公式計算即可求解.
(Ⅰ)證明:在上取點,且滿足,
連接,,則,且,
因為,
所以,且
所以是平行四邊形,
所以,
又因為平面,平面,
所以平面;
(Ⅱ)過點作與平行的射線,易證兩兩垂直,
所以以為軸,以為軸,為軸,建立空間直角坐標系,如圖,
則有,
設平面的法向量為,則
,令,解得
所以是平面的一個法向量
因為點在上,所以
因為平面,所以,
解得,所以
或如下證法:因為平面且平面平面,
所以,
所以,
因為為中點,所以為中點,所以,
所以,
設平面的法向量為,則
,令,解得
所以是平面的一個法向量,,
所以與平面所成角的正弦值為.
科目:高中數學 來源: 題型:
【題目】2019年,河南省鄭州市的房價依舊是鄭州市民關心的話題.總體來說,二手房房價有所下降,相比二手房而言,新房市場依然強勁,價格持續(xù)升高.已知銷售人員主要靠售房提成領取工資.現統(tǒng)計鄭州市某新房銷售人員一年的工資情況的結果如圖所示,若近幾年來該銷售人員每年的工資總體情況基本穩(wěn)定,則下列說法正確的是( )
A.月工資增長率最高的為8月份
B.該銷售人員一年有6個月的工資超過4000元
C.由此圖可以估計,該銷售人員2020年6,7,8月的平均工資將會超過5000元
D.該銷售人員這一年中的最低月工資為1900元
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某調查機構對全國互聯網行業(yè)進行調查統(tǒng)計,得到整個互聯網行業(yè)從業(yè)者年齡分布餅狀圖和90后從事互聯網行業(yè)者崗位分布圖(90后指1990年及以后出生,80后指1980-1989年之間出生,80前指1979年及以前出生),則下列結論中不一定正確的是( )
整個互聯網行業(yè)從業(yè)者年齡分布餅狀圖 90后從事互聯網行業(yè)者崗位分布圖
A.互聯網行業(yè)從業(yè)人員中90后占一半以上
B.互聯網行業(yè)中從事技術崗位的人數90后比80后多
C.互聯網行業(yè)中從事設計崗位的人數90后比80前多
D.互聯網行業(yè)中從事市場崗位的90后人數不足總人數的10%
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】投到某出版社的稿件,先由兩位初審專家進行評審,若能通過兩位初審專家的評審,則直接予以錄用,若兩位初審專家都未予通過,則不予錄用,若恰能通過一位初審專家的評審,則再由第三位專家進行復審,若能通過復審專家的評審,則予以錄用,否則不予錄用.設稿件能通過各初審專家評審的概率均為,復審的稿件能通過評審的概率為,各專家獨立評審,則投到該出版社的1篇稿件被錄用的概率為__________.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數.
(1)若在處的切線方程為,求實數的值;
(2)證明:當時,在上有兩個極值點;
(3)設,若在上是單調減函數(為自然對數的底數),求實數的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】古希臘數學家阿波羅尼奧斯發(fā)現:平面上到兩定點,距離之比為常數且的點的軌跡是一個圓心在直線上的圓,該圓簡稱為阿氏圓.根據以上信息,解決下面的問題:如圖,在長方體中,,點在棱上,,動點滿足.若點在平面內運動,則點所形成的阿氏圓的半徑為________;若點在長方體內部運動,為棱的中點,為的中點,則三棱錐的體積的最小值為___________.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com