已知一圓弧的弧長等于它所在圓的內(nèi)接正三角形的邊長,則這段圓弧所對圓心角的弧度數(shù)為
 
考點:弧度制
專題:三角函數(shù)的求值
分析:如圖所示,△ABC是半徑為r的⊙O的內(nèi)接正三角形,可得BC=2CD=2rsin
π
3
=
3
r
,設(shè)圓弧所對圓心角的弧度數(shù)為α,可得rα=
3
r
,即可得出.
解答: 解:如圖所示,
△ABC是半徑為r的⊙O的內(nèi)接正三角形,
則BC=2CD=2rsin
π
3
=
3
r
,
設(shè)圓弧所對圓心角的弧度數(shù)為α,
則rα=
3
r
,
解得α=
3

故答案為:
3
點評:本題考查了圓的內(nèi)接正三角形的性質(zhì)、弧長公式、直角三角形的邊角關(guān)系,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

棱長為2的正方體的對角線長為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

把正整數(shù)排列成如圖甲三角形數(shù)陣,然后擦去第偶數(shù)行中的奇數(shù)和第奇數(shù)行中的偶數(shù),得到如圖乙的三角形數(shù)陣,再把圖乙中的數(shù)按從小到大的順序排成一列,得到一個數(shù)列{an},若an=911,則n=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

不等式|2x-2|+|x-4|>4,x∈R的解集是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

菱形ABCD中,已知∠BAD=60°,AB=10cm,PA垂直于ABCD所在平面且PA=5cm,則P到CD的距離為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)S,T是R的兩個非空子集,如果存在一個從S到T的函數(shù)y=f(x)滿足:
(i)T={f(x)|x∈S};
(ii)對任意x1,x2∈S,當(dāng)x1<x2時,恒有f(x1)<f(x2).
那么稱這兩個集合“保序同構(gòu)”.現(xiàn)給出以下4對集合:
①S=R,T={-1,1};
②S=N,T=N*;
③S={x|-1≤x≤3},T={x|-8≤x≤10};
④S={x|0<x<1},T=R
其中,“保序同構(gòu)”的集合對的對應(yīng)的序號是
 
(寫出所有“保序同構(gòu)”的集合對的對應(yīng)的序號).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知實數(shù)x,y滿足
y≥0
x-y≥0
x+y-4≤0
,則2x-y-3的最大值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知p:
1
x-2
≥1,q:|x-a|<1,若p是q的充分不必要條件,則實數(shù)a的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

觀察下列算式:
13=1,
23=3+5,
33=7+9+11,
43=13+15+17+19,

若某數(shù)n3按上述規(guī)律展開后,發(fā)現(xiàn)等式右邊含有“2013”這個數(shù),則n=(  )
A、41B、43C、45D、47

查看答案和解析>>

同步練習(xí)冊答案