若函數(shù)f(x)=x(x∈R),則函數(shù)y=-f(x)在其定義域內(nèi)是( 。
A、單調(diào)遞增的偶函數(shù)
B、單調(diào)遞增的奇函數(shù)
C、單調(diào)遞減的偶函數(shù)
D、單調(diào)遞減的奇函數(shù)
考點(diǎn):函數(shù)單調(diào)性的性質(zhì),函數(shù)奇偶性的性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)函數(shù)奇偶性的定義和性質(zhì)即可得到結(jié)論.
解答: 解:∵f(x)=x(x∈R),
∴y=-f(x)=-x(x∈R),
設(shè)g(x)=-x,則g(-x)=x=-(-x)=-g(x)為奇函數(shù),且單調(diào)遞減,
故選:D
點(diǎn)評:本題主要考查函數(shù)奇偶性和單調(diào)性的判斷,比較基礎(chǔ).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

向量
a
b
的夾角為120°,且|
a
|=3,|
b
|=5,那么|
a
+
b
|=
 
,|
a
-
b
|=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A,B,C的對邊分別是a,b,c,已知a=2c,且A-C=
π
2

(1)求cosC的值;
(2)當(dāng)b=1時(shí),求△ABC的面積S的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合A={x|2≤x<4},B={x|3x-7≥8-2x},則A∩B=(  )
A、{x|2≤x≤3}
B、{x|3≤x<4}
C、{x|x≥2}
D、{x|x<4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

正△ABC的邊長為1,則
AB
BC
+
BC
CA
+
CA
AB
=(  )
A、
3
2
B、-
3
2
C、
1
2
D、-
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)全集U=R,集合M={x|-2≤x<3},N={x|-1≤x≤4},則N∩∁UM=( 。
A、{x|-4≤x≤-2}
B、{x|-1≤x≤3}
C、{x|3≤x≤4}
D、{x|3<x≤4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

△ABC中,|
CB
|cos∠ACB=|
BA
|cos∠CAB=
3
,且
AB
BC
=0,則AB長為(  )
A、
3
B、
6
C、3
D、2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)拋物線y=ax2(a>0)與直線y=kx+b(k≠0)有兩個(gè)交點(diǎn),其橫坐標(biāo)分別是x1,x2,而直線y=kx+b(k≠0)與x軸交點(diǎn)的橫坐標(biāo)是x3,那么x1,x2,x3的關(guān)系是(  )
A、
1
x3
=
1
x2
+
1
x1
B、x3=x1+x2
C、
1
x1
=
1
x3
+
1
x2
D、x1=x2+x3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列以x為自變量的函數(shù)中,是指數(shù)函數(shù)的是(  )
A、y=(-3)x
B、y=ex(e=2.718 28…)
C、y=-4x
D、y=ax+2(x>0且a≠1)

查看答案和解析>>

同步練習(xí)冊答案