【題目】從一批蘋果中,隨機抽取50個,其重量(單位:克)的頻數(shù)分布表如下:

分組(重量)

頻數(shù)(個)

5

10

20

15

(1) 根據(jù)頻數(shù)分布表計算蘋果的重量在的頻率;

(2) 用分層抽樣的方法從重量在的蘋果中共抽取4個,其中重量在的有幾個?

(3) 在(2)中抽出的4個蘋果中,任取2個,求重量在中各有1個的概率.

答案(1) (2)1個 (3)

【解析】1)蘋果的重量在的頻率為;

(2重量在的有;

(3設(shè)4個蘋果中段的為1,分段的為2、3、4,從中任取兩個,可能的情況有:

1,2(1,3)(1,4)(2,3)(2,4(3,4共6種;設(shè)任取2個,重量在中各有1個的事件A,事件A包含有1,2(1,3)(1,4共3種,所以.

(1)利用頻數(shù)分布表,確定數(shù)據(jù),然后利用公式求解頻率;(2)根據(jù)分層抽樣的比例不變性求解;(3)利用古典概型公式求解,關(guān)鍵是明確好明確條件的數(shù)量.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=(2﹣a)(x﹣1)﹣2lnx,(a∈R). (Ⅰ)當a=1時,求f(x)的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)f(x)在(0, )上無零點,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校對高二年段的男生進行體檢,現(xiàn)將高二男生的體重(kg)數(shù)據(jù)進行整理后分成6組,并繪制部分頻率分布直方圖(如圖所示).已知第三組[60,65)的人數(shù)為200.根據(jù)一般標準,高二男生體重超過65kg屬于偏胖,低于55kg屬于偏瘦.觀察圖形的信息,回答下列問題:

(1)求體重在[60,65)內(nèi)的頻率,并補全頻率分布直方圖;

(2)用分層抽樣的方法從偏胖的學生中抽取6人對日常生活習慣及體育鍛煉進行調(diào)查,則各組應(yīng)分別抽取多少人?

(3)根據(jù)頻率分布直方圖,估計高二男生的體重的中位數(shù)與平均數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校高三年級共有學生名,為了解學生某次月考的情況,抽取了部分學生的成績(得分均為整數(shù),滿分為分)進行統(tǒng)計,繪制出如下尚未完成的頻率分布表:

分組

頻數(shù)

頻率

(1)補充完整題中的頻率分布表;

(2)若成績在為優(yōu)秀,估計該校高三年級學生在這次月考中,成績優(yōu)秀的學生約為多少人.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) (x>0,e為自然對數(shù)的底數(shù)),f'(x)是f(x)的導(dǎo)函數(shù). (Ⅰ)當a=2時,求證f(x)>1;
(Ⅱ)是否存在正整數(shù)a,使得f'(x)≥x2lnx對一切x>0恒成立?若存在,求出a的最大值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對于正整數(shù)集合,如果去掉其中任意一個元素之后,剩余的所有元素組成的集合都能分為兩個交集為空集的集合,且這兩個集合的所有元素之和相等,就稱集合和諧集”.

)判斷集合是否是和諧集(不必寫過程).

)請寫出一個只含有個元素的和諧集,并證明此集合為和諧集”.

)當時,集合,求證:集合不是和諧集”.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系xOy中,直線l過點M(3,4),其傾斜角為45°,圓C的參數(shù)方程為 .再以原點為極點,以x正半軸為極軸建立極坐標系,并使得它與直角坐標系xoy有相同的長度單位.
(1)求圓C的極坐標方程;
(2)設(shè)圓C與直線l交于點A、B,求|MA||MB|的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在平面凸四邊形中(凸四邊形指沒有角度數(shù)大于的四邊形),.

(1)若,,求;

(2)已知,記四邊形的面積為.

① 求的最大值;

② 若對于常數(shù),不等式恒成立,求實數(shù)的取值范圍.(直接寫結(jié)果,不需要過程)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,正方體的棱長為1,中點,連接,則異面直線所成角的余弦值為_____

【答案】

【解析】

連接CD1,CM,由四邊形A1BCD1為平行四邊形得A1BCD1,即∠CD1M為異面直線A1BD1M所成角,再由已知求△CD1M的三邊長,由余弦定理求解即可.

如圖,

連接,由,可得四邊形為平行四邊形,

,∴為異面直線所成角,

由正方體的棱長為1,中點,

,

中,由余弦定理可得,

∴異面直線所成角的余弦值為

故答案為:

【點睛】

本題考查異面直線所成角的求法,異面直線所成的角常用方法有:將異面直線平移到同一平面中去,達到立體幾何平面化的目的;或者建立坐標系,通過求直線的方向向量得到直線夾角或其補角.

型】填空
結(jié)束】
16

【題目】中,角所對的邊分別是,的中點,,,面積的最大值為_____

查看答案和解析>>

同步練習冊答案