在△ABC中,a、b、c分別是角A、B、C所對的邊,A=
π
3
,a=
3
,c=1,則△ABC的面積S=
 
考點:正弦定理
專題:解三角形
分析:利用正弦定理求出C,判斷三角形的形狀,然后求解三角形的面積.
解答: 解:由正弦定理
a
sinA
=
c
sinC
,可得
3
sin
π
3
=
1
sinC

∴sinC=
1
2
,∴C=
π
6
6
(舍)(A=
π
3
),
∵A+C=
π
2
,
∴△ABC為直角三角形,直角邊為a,c,∴△ABC面積為:
3
2

故答案為:
3
2
點評:本題考查正弦定理的應用,三角形的面積的求法,考查計算能力.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

半徑為4的球面上有A、B、C、D四點,且滿足AB⊥CD,AC⊥AD,AD⊥AB,則S△ABC+S△ACD+S△ADB的最大值為(S為三角形的面積)
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知F1,F(xiàn)2是雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的左、右焦點,點P在雙曲線上且不與頂點重合,過F2作∠F1PF2的角平分線的垂線,垂足為A.若|OA|=b,則該雙曲線的離心率為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知復數(shù)z1=sin2x+λi,z2=m+(m-
3
cos2x)i
(λ,m,x∈R),且z1=z2
(1)設λ=f(x),求f(x)的最小正周期和單調遞增區(qū)間.
(2)當x∈[0,
π
2
]時,求函數(shù)f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設△ABC的內角A、B、C所對邊的長分別為a,b,c,且有
2
sin(2A+
π
4
)+sin(A+C+
π
6
)=1+2cos2A.
(Ⅰ)求A、B的值;
(Ⅱ)若a2+c2=b-ac+2,求a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系xOy中,直線l的參數(shù)方程是
x=
3
2
t+m
y=
1
2
t
(t是參數(shù)),以原點為極點,x軸的正半軸為極軸建立極坐標系,若圓C的極坐標方程是ρ=4cosθ,且直線l與圓C相切,求實數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在(5x-4)(3-2x29的展開式中,次數(shù)最高的項的系數(shù)是
 
.(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知拋物線y2=8x的焦點F到雙曲線C:
y2
a2
-
x2
b2
=1(a>0,b>0)漸近線的距離為
4
5
5
,點P是拋物線y2=8x上的一動點,P到雙曲線C的上焦點F1(0,c)的距離與到直線x=-2的距離之和的最小值為3,則該雙曲線的方程為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

定義在R上的函數(shù)f(x)滿足:f(1)=1,且對于任意的x∈R,都有f′(x)<
1
2
,則不等式f(lgx)>
lgx+1
2
的解集為
 

查看答案和解析>>

同步練習冊答案