【題目】加工爆米花時,爆開且不糊的粒數(shù)占加工總粒數(shù)的百分比稱為“可食用率”.在特定條件下,可食用率p與加工時間t(單位:分鐘)滿足函數(shù)關(guān)系(a,b,c是常數(shù)),如圖記錄了三次實驗的數(shù)據(jù).根據(jù)上述函數(shù)模型和實驗數(shù)據(jù),可以得到最佳加工時間為________分鐘.
【答案】3.75(或)
【解析】
由題意函數(shù)關(guān)系p=at2+bt+c(a,b,c是常數(shù))經(jīng)過點(3,0.7),(4,0.8),(5,0.5),列出方程組,推導出p=﹣0.2t2+1.5t﹣2.2=﹣0.2(t﹣3.75)2+0.6125,由此能得到最佳加工時間.
由題意函數(shù)關(guān)系p=at2+bt+c(a,b,c是常數(shù))經(jīng)過點(3,0.7),(4,0.8),(5,0.5),
∴,
a=﹣0.2,b=1.5,c=﹣2.2,
∴p=﹣0.2t2+1.5t﹣2.2=﹣0.2(t﹣3.75)2+0.6125,
∴得到最佳加工時間為3.75分鐘.
故答案為:3.75.
科目:高中數(shù)學 來源: 題型:
【題目】在矩形ABCD中,AB=4 ,AD=2 ,將△ABD沿BD折起,使得點A折起至A′,設(shè)二面角A′﹣BD﹣C的大小為θ.
(1)當θ=90°時,求A′C的長;
(2)當cosθ= 時,求BC與平面A′BD所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某高校進行社會實踐,對歲的人群隨機抽取1000人進行了一次是否開通“微博”的調(diào)查,開通“微博”的為“時尚族”,否則稱為“非時尚族”.通過調(diào)查得到各年齡段人數(shù)的頻率分布直方圖如圖所示,其中在歲、歲年齡段人數(shù)中,“時尚族”人數(shù)分別占本組人數(shù)的80%、60%.
請完成以下問題:
(1)求歲與歲年齡段“時尚族”的人數(shù);
(2)從歲和歲年齡段的“時尚族”中,采用分層抽樣法抽取6人參加網(wǎng)絡(luò)時尚達人大賽,其中兩人作為領(lǐng)隊,求領(lǐng)隊的兩人年齡都在歲內(nèi)的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)的定義域為實數(shù)集R,及整數(shù)k、T;
(1)若函數(shù)f(x)=2xsin(πx),證明f(x+2)=4f(x);
(2)若f(x+T)=kf(x),且f(x)=axφ(x)(其中a為正的常數(shù)),試證明:函數(shù)φ(x)為周期函數(shù);
(3)若f(x+6)= f(x),且當x∈[﹣3,3]時,f(x)= (x2﹣9),記Sn=f(2)+f(6)+f(10)+…+f(4n﹣2),n∈N+ , 求使得S1、S2、S3、…、Sn小于1000都成立的最大整數(shù)n.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某租賃公司擁有汽車100輛,當每輛車的月租金為3200元時,可全部租出。當每輛車的月租金每增加50元時(租金增減為50元的整數(shù)倍),未租出的車將會增加一輛。租出的車每輛每月需要維護費150元,未租出的車每輛每月需要維護費50元。
(1)當每輛車的月租金定為3600元時,能租出多少輛車?
(2)設(shè)租金為(3200+50x)元/輛(x∈N),用x表示租賃公司的月收益y(單位:元)。
(3)當每輛車的月租金定為多少元時,租賃公司的月收益最大?最大月收益是多少?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=xlnx+a.
(1)若函數(shù)y=f(x)在x=e處的切線方程為y=2x,求實數(shù)a的值;
(2)設(shè)m>0,當x∈[m,2m]時,求f(x)的最小值;
(3)求證: .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)是定義域為的奇函數(shù).
(1)求實數(shù)的值;
(2)若,不等式在上恒成立,求實數(shù)的取值范圍;
(3)若且 上最小值為,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,以坐標原點為極點, 軸正半軸為極軸,建立極坐標系,曲線的極坐標方程為為曲線上的動點,點在線段上,且滿足.
(1)求點的軌跡的直角坐標方程;
(2)直線的參數(shù)方程是(為參數(shù)),其中. 與交于點,求直線的斜率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com