已知函數(shù)f(x)=
1
3
ax3-bx2+(2-b)x+1(a,b是實(shí)數(shù),a≠0)在x=x1處取得極大值,在x=x2處取得極小值,且0<x1<1<x2<2.
(1)求證:0<a<2b<3a:
(2)若函數(shù)g(x)=f′(x)-2+a-2b.設(shè)g(x)的零點(diǎn)為α,β,求|α-β|的取值范圍.
考點(diǎn):利用導(dǎo)數(shù)研究函數(shù)的極值
專(zhuān)題:計(jì)算題,證明題,導(dǎo)數(shù)的綜合應(yīng)用
分析:(1)由極值和導(dǎo)數(shù)的關(guān)系,以及單調(diào)性和導(dǎo)數(shù)的關(guān)系得到a>0,再由二次函數(shù)的性質(zhì)可得f′(0)>0,f′(1)<0,f′(2)>0,即可得證;
(2)求出g(x)的表達(dá)式,運(yùn)用韋達(dá)定理,求出|α-β|的表達(dá)式,配方再由(1)的結(jié)論,即可得到.
解答: (1)證明:由題意f'(x)=ax2-2bx+(2-b),
f'(x)=0的根為x1,x2,且0<x1<1<x2<2,
且f(x)在區(qū)間(-∞,x1),(x2,+∞)上單調(diào)遞增,即f'(x)>0,
f(x)在(x1,x2)上單調(diào)遞減,即f'(x)<0,
所以a>0,
所以
f′(0)=2-b>0
f′(1)=a-3b+2<0
f′(2)=4a-5b+2>0
?
1
2
b
a
3
2
,
又a>0,所以0<a<2b<3a;
(2)解:函數(shù)g(x)=f'(x)-2+a-2b.設(shè)g(x)的零點(diǎn)為α,β,
即有g(shù)(x)=ax2-2bx+a-3b,α+β=
2b
a
,αβ=
a-3b
a
,
|α-β|=
2
b2+3ab-a2
|a|
=2
(
b
a
)
2
+3×
b
a
-1

由(1)知
1
2
b
a
3
2

|α-β|∈(
3,
23
)
點(diǎn)評(píng):本題考查導(dǎo)數(shù)的綜合應(yīng)用:求單調(diào)區(qū)間和求極值,考查函數(shù)和方程的轉(zhuǎn)換思想方法,注意運(yùn)用二次函數(shù)的性質(zhì)解決,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

福建省第14屆運(yùn)動(dòng)會(huì)在媽祖故里莆田舉行,在開(kāi)幕式表演“籃球操”的訓(xùn)練中我校A、B、C三個(gè)同學(xué)一組進(jìn)行傳球訓(xùn)練,每個(gè)同學(xué)傳給另外兩個(gè)中的某一個(gè)的可能性都相同
(Ⅰ)列出從A開(kāi)始3次傳球的所有路徑(用A、B、C表示);
(Ⅱ)求從起A開(kāi)始3次傳球后,籃球停在A的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)是定義在(0,+∞)上的單調(diào)函數(shù),且對(duì)任意的正數(shù)x,y都有f(x•y)=f(x)+f(y),若數(shù)列{an}的前n項(xiàng)和為Sn,且滿(mǎn)足f(Sn+2)-f(an)=f(3)(n∈N*),則a3=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某市對(duì)上下班交通情況作抽樣調(diào)查,作出上下班時(shí)間各抽取的12輛機(jī)動(dòng)車(chē)行駛時(shí)速(單位:km/h)的莖葉圖如圖.則上、下班行駛時(shí)速的中位數(shù)分別為( 。
A、28與28.5
B、29與28.5
C、28與27.5
D、29與27.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
log3x,x>0
3x,x≤0
,且關(guān)于x的方程f(x)+x+3a=0有兩個(gè)實(shí)數(shù)根,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)是定義在(-∞,+∞)上的偶函數(shù),當(dāng)x∈(-∞,0)時(shí),f(x)=
1
x
-x4,則當(dāng)x∈(0,+∞)時(shí),f(x)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如果a⊥b,那么a與b( 。
A、一定相交B、一定異面
C、一定共面D、一定不平行

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

直線(xiàn)3x+4y+2=0被圓x2+y2-2x-3=0截得的弦長(zhǎng)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)x∈R,用[x]表示不超過(guò)x的最大整數(shù),稱(chēng)函數(shù)f(x)=[x]為高斯函數(shù),也叫取整函數(shù).現(xiàn)有下列四個(gè)命題:
①高斯函數(shù)為定義域?yàn)镽的奇函數(shù);
②“[x]”≥“[y]”是“x≥y”的必要不充分條件;
③設(shè)g(x)=(
1
2
|x|,則函數(shù)f(x)=[g(x)]的值域?yàn)閧0,1};
④方程[
x+1
4
]=[
x-1
2
]的解集是{x|1≤x<5}.
其中真命題的序號(hào)是
 
.(寫(xiě)出所有真命題的序號(hào))

查看答案和解析>>

同步練習(xí)冊(cè)答案