(本題滿分12分)在四棱錐中,平面,,,

.

(Ⅰ)證明;

(Ⅱ)求二面角的正弦值;

(Ⅲ)設為棱上的點,滿足異面直線所成的角為,求的長.

 

 

【答案】

(Ⅰ)見解析(Ⅱ)  (Ⅲ)

【解析】

試題分析:(1)以正半軸方向,建立空間直角坐標系

       

二面角的正弦值為

(3)設;則,

 解得      即

考點:直線垂直的判定及空間角空間距的計算

點評:利用空間向量求解立體幾何題目首要的選擇一個合適的建系位置

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(本題滿分12分)

在△ABC中,角A、BC的對邊分別為a、b、c,且

??????(Ⅰ)求角A的大。??????(Ⅱ)若,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本題滿分12分)

在平面直角坐標系中,已知A1(-3,0),A2(3,0),P(x,y),M(,0),若實數(shù)λ使向量,λ,滿足λ2·(2=·。

(1)求點P的軌跡方程,并判斷P點的軌跡是怎樣的曲線;

(2)當λ=時,過點A1且斜率為1的直線與此時(1)中的曲線相交的另一點為B,能否在直線x=-9上找一點C,使ΔA1BC為正三角形(請說明理由)。

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年遼寧沈陽二中等重點中學協(xié)作體高三領航高考預測(二)文數(shù)學卷(解析版) 題型:解答題

(本題滿分12分)在分別為A,B,C所對的邊,

(1)判斷的形狀;

(2)若,求的取值范圍

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013屆云南大理州賓川四中高二下學期4月考試文科數(shù)學試卷(解析版) 題型:解答題

(本題滿分12分)在各項為正的數(shù)列中,數(shù)列的前n項和滿足

(1)求;(2) 由(1)猜想數(shù)列的通項公式;(3) 求

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013屆云南省高二上學期期末考試理科數(shù)學 題型:解答題

(本題滿分12分)在邊長為2的正方體中,E是BC的中點,F(xiàn)是的中點

(Ⅰ)求證:CF∥平面

(Ⅱ)求二面角的平面角的余弦值。

 

 

 

 

 

查看答案和解析>>

同步練習冊答案