精英家教網(wǎng)如圖,平面α上定點(diǎn)F到定直線(xiàn)l的距離FA=2,曲線(xiàn)C是平面α上到定點(diǎn)F和到定直線(xiàn)l的距離相等的動(dòng)點(diǎn)P的軌跡. 設(shè)FB⊥α,且FB=2.
(1)若曲線(xiàn)C上存在點(diǎn)P0,使得P0B⊥AB,試求直線(xiàn)P0B與平面α所成角θ的大。
(2)對(duì)(1)中P0,求點(diǎn)F到平面ABP0的距離h.
分析:(1)解法一:以線(xiàn)段FA的中點(diǎn)為原點(diǎn)O,以線(xiàn)段FA所在的直線(xiàn)為x軸,建立空間直角坐標(biāo)系O-xyz,由此易求出曲線(xiàn)C的方程,設(shè)出P點(diǎn)坐標(biāo)后,根據(jù)P0B⊥AB,構(gòu)造方程,解方程求出P點(diǎn)坐標(biāo),即可得到答案.
解法二:以點(diǎn)A為原點(diǎn)O,以線(xiàn)段FA所在的直線(xiàn)為x軸,建立空間直角坐標(biāo)系O-xyz.設(shè)出P點(diǎn)的坐標(biāo),根據(jù)曲線(xiàn)C是平面α上到定點(diǎn)F和到定直線(xiàn)l的距離相等的動(dòng)點(diǎn)P的軌跡,構(gòu)造方程,解方程求出P點(diǎn)坐標(biāo),即可得到答案.
(2)解法一:由(1)可得,△ABP的面積及△AFP的面積,然后使用等體積法,即可求出點(diǎn)F到平面ABP0的距離h.
解法二:計(jì)算出平面ABP0的一個(gè)法向量的坐標(biāo),代入點(diǎn)到平面距離公式,h=
|
AF
n0
|
|
n0
|
,即可求出點(diǎn)F到平面ABP0的距離h.
解答:精英家教網(wǎng)解:(1)(解法一)如圖,以線(xiàn)段FA的中點(diǎn)為原點(diǎn)O,以線(xiàn)段FA所在的直線(xiàn)為x軸,建立空間直角坐標(biāo)系O-xyz.
由題意,曲線(xiàn)C是平面α上以原點(diǎn)O為頂點(diǎn),由于在xOy平面內(nèi),CF(2,0,0)
是以O(shè)為頂點(diǎn),以x軸為對(duì)稱(chēng)軸的拋物線(xiàn),其方程為y2=4x,
因此,可設(shè)P(
y2
4
,y,0)
A(-1,0,0),B(1,0,2),所以,
AB
=(2,0,2)
,
PB
=(1-
y2
4
,-y,2)

由P0B⊥AB,得2(1-
y2
4
)+4=0?y=2
3
?P(3,2
3
,0)

所以,直線(xiàn)P0B與平面α所成角的大小為arctan
1
2
(或arcsin
3
3
).
(解法二)如圖,以點(diǎn)A為原點(diǎn)O,以線(xiàn)段FA所在的直線(xiàn)為x軸,建立空間直角坐標(biāo)系O-xyz.
所以,A(0,0,0),B(2,0,2),F(xiàn)(2,0,0),并設(shè)P(x,y,0),
由題意,
PB2+AB2=AP2
PF=PE.

(x-2)2+y2+4+8=x2+y2
(x-2)2+y2=x2.
?P(3,2
3
,0)

所以,直線(xiàn)P0B與平面α所成角的大小為arctan
1
2
(或arcsin
5
5
).
(2)(解法一)由(1),得△ABP的面積為S△ABP=2
10
,△AFP的面積為S△AFP=2
3

所以,
1
3
×2
10
h=
1
3
×2
3
×2
,
解得,h=
30
5

(解法二)
AB
=(2,0,2)
,
AP
=(4,2
3
,0)
,設(shè)向量
n
=(x,y,z)

2x+2z=0
4x+2
3
y=0

所以,平面ABP0的一個(gè)法向量
n0
=(3,-2
3
,-3)
,∴h=
|
AF
n0
|
|
n0
|
=
30
5
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是直線(xiàn)與平面所成的角,點(diǎn)到平面的距離計(jì)算,其中(1)的關(guān)鍵是求出滿(mǎn)足條件的P點(diǎn)坐標(biāo),(2)的中解法一關(guān)鍵是利用轉(zhuǎn)化思想,根據(jù)棱錐翻轉(zhuǎn)過(guò)程中體積不變進(jìn)行求解,解法二的關(guān)鍵是點(diǎn)到平面距離公式,h=
|
AF
n0
|
|
n0
|
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知E、F為平面上的兩個(gè)定點(diǎn)|EF|=6,|FG|=10,且2
EH
=
EG
HP
GE
=0
(G為動(dòng)點(diǎn),P是HP和GF的交點(diǎn)).
(Ⅰ)建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系求出點(diǎn)P的軌跡方程;
(Ⅱ)若點(diǎn)P的軌跡上存在兩個(gè)不同的點(diǎn)A、B,且線(xiàn)段AB的中垂線(xiàn)與直線(xiàn)EF相交于一點(diǎn)C,證明|OC|<
9
5
(O為EF的中點(diǎn)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,平面上定點(diǎn)F到定直線(xiàn)l的距離|FM|=2,P為該平面上的動(dòng)點(diǎn),過(guò)P作直線(xiàn)l的垂線(xiàn),垂足為Q,且(
PF
+
PQ
)•(
PF
-
PQ
)=0

(1)試建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,求動(dòng)點(diǎn)P的軌跡C的方程;
(2)過(guò)點(diǎn)F的直線(xiàn)交軌跡C于A、B兩點(diǎn),交直線(xiàn)l于點(diǎn)N,已知
NA
=λ1
AF
,
NB
=λ2
BF
,求證:λ1+λ2
為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2006•海淀區(qū)二模)如圖,平面內(nèi)的定點(diǎn)F到定直線(xiàn)l的距離為2,定點(diǎn)E滿(mǎn)足:|
EF
|=2且EF⊥l于G,點(diǎn)Q是直線(xiàn)l上一動(dòng)點(diǎn),點(diǎn)M滿(mǎn)足
FM
=
MQ
,點(diǎn)P滿(mǎn)足
PQ
EF
,
PM
FQ
=0.
(1)建立適當(dāng)?shù)闹苯亲鴺?biāo)系,求動(dòng)點(diǎn)P的軌跡方程;
(2)若經(jīng)過(guò)點(diǎn)E的直線(xiàn)l1與點(diǎn)P的軌跡交于相異兩點(diǎn)A、B,令∠AFB=θ,當(dāng)
3
4
π≤θ<π時(shí),求直線(xiàn)l1的斜率k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,平面內(nèi)的定點(diǎn)F到定直線(xiàn)l的距離為2,定點(diǎn)E滿(mǎn)足:||=2且EF⊥l于G,點(diǎn)Q是直線(xiàn)l上一動(dòng)點(diǎn),點(diǎn)M滿(mǎn)足,點(diǎn)P滿(mǎn)足,=0.

(1)建立適當(dāng)?shù)闹苯亲鴺?biāo)系,求動(dòng)點(diǎn)P的軌跡方程;

(2)若經(jīng)過(guò)點(diǎn)E的直線(xiàn)l1與點(diǎn)P的軌跡交于相異兩點(diǎn)A、B,令∠AFB=θ,當(dāng)4π≤θ≤π時(shí),求直線(xiàn)l1的斜率k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2006年北京市海淀區(qū)高考數(shù)學(xué)二模試卷(理科)(解析版) 題型:解答題

如圖,平面內(nèi)的定點(diǎn)F到定直線(xiàn)l的距離為2,定點(diǎn)E滿(mǎn)足:||=2且EF⊥l于G,點(diǎn)Q是直線(xiàn)l上一動(dòng)點(diǎn),點(diǎn)M滿(mǎn)足=0.
(1)建立適當(dāng)?shù)闹苯亲鴺?biāo)系,求動(dòng)點(diǎn)P的軌跡方程;
(2)若經(jīng)過(guò)點(diǎn)E的直線(xiàn)l1與點(diǎn)P的軌跡交于相異兩點(diǎn)A、B,令∠AFB=θ,當(dāng)π≤θ<π時(shí),求直線(xiàn)l1的斜率k的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案