【題目】已知橢圓的左、右頂點(diǎn)分別為,左焦點(diǎn)為,點(diǎn)為橢圓上任一點(diǎn),若直線與的斜率之積為,且橢圓經(jīng)過(guò)點(diǎn).
(1)求橢圓的方程;
(2)若交直線于兩點(diǎn),過(guò)左焦點(diǎn)作以為直徑的圓的切線.問(wèn)切線長(zhǎng)是否為定值,若是,請(qǐng)求出定值;若不是,請(qǐng)說(shuō)明理由.
【答案】(1) .
(2) 過(guò)左焦點(diǎn)作以為直徑的圓的切線長(zhǎng)為定值.過(guò)程見(jiàn)解析.
【解析】
(1)設(shè)點(diǎn)坐標(biāo),根據(jù)兩點(diǎn)間斜率公式化簡(jiǎn)直線與的斜率之積得,再根據(jù)橢圓經(jīng)過(guò)點(diǎn)得,解方程組可得(2)設(shè)為圓的一條切線,切點(diǎn)為,由切割線定理得,根據(jù)直線方程與橢圓方程聯(lián)立方程組解得M,N坐標(biāo),代入化簡(jiǎn)可得.
(1)設(shè)點(diǎn)坐標(biāo)為,由題意知,且
則
即①
又因?yàn)闄E圓經(jīng)過(guò)點(diǎn).
故②
由①②可知,
故橢圓的標(biāo)準(zhǔn)方程為.
(2)可知設(shè)
由,得
所以直線的方程為,令,則,故
直線方程為,令,則,故
如圖,因?yàn)?/span>,
故以為直徑的圓在軸同側(cè).
設(shè)為圓的一條切線,切點(diǎn)為,連結(jié)
可知∽
故,則
故
故過(guò)左焦點(diǎn)作以為直徑的圓的切線長(zhǎng)為定值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某村電費(fèi)收取有以下兩種方案供農(nóng)戶選擇:方案一:每戶每月收管理費(fèi)2元,月用電不超過(guò)30度時(shí),每度0.5元;超過(guò)30度時(shí),超過(guò)部分按每度0.6元收取. 方案二:不收管理費(fèi),每度0.58元.
(1)求方案一收費(fèi)元與用電量x (度)之間的函數(shù)關(guān)系;
(2)老王家九月份按方案一交費(fèi)35元,問(wèn)老王家該月用電多少度?
(3)老王家月用電最在什么范圍時(shí),選擇方案一比選擇方案二更好?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓: 的離心率為,直線交橢圓于、兩點(diǎn),橢圓的右頂點(diǎn)為,且滿足.
(1)求橢圓的方程;
(2)若直線與橢圓交于不同兩點(diǎn)、,且定點(diǎn)滿足,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】假設(shè)要考察某公司生產(chǎn)的流感疫苗的劑量是否達(dá)標(biāo),現(xiàn)從500支疫苗中抽取50支進(jìn)行檢驗(yàn),利用隨機(jī)數(shù)表法抽取樣本時(shí),先將500支疫苗按進(jìn)行編號(hào),如果從隨機(jī)數(shù)表第7行第8列的數(shù)開(kāi)始向右讀,請(qǐng)寫(xiě)出第3支疫苗的編號(hào)________.(下面摘取了隨機(jī)數(shù)表第7行至第9行)
第7行:84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50
25 83 92 12 06 76
第8行:63 01 63 78 59 16 95 56 67 19 98 10 50 71 75 12 86 73 58
07 44 39 52 38 79
第9行:33 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13
42 99 66 02 79 54
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)校初中部共120名教師,高中部共180名教師,其性別比例如圖所示,已知按分層抽樣方法得到的工會(huì)代表中,高中部女教師有6人,則工會(huì)代表中男教師的總?cè)藬?shù)為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在正方體.
(1)求AC與所成角的大小;
(2)若E,F分別為AB,AD的中點(diǎn),求EF與平面所成角的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2018年3月7日《科學(xué)網(wǎng)》刊登“動(dòng)物可以自我馴化”的文章表明:關(guān)于野生小鼠的最新研究,它們?cè)趲缀鯖](méi)有任何人類影響的情況下也能表現(xiàn)出進(jìn)化的跡象——皮毛上白色的斑塊以及短鼻子.為了觀察野生小鼠的這種表征,從有2對(duì)不同表征的小鼠(白色斑塊和短鼻子野生小鼠各一對(duì))的實(shí)驗(yàn)箱中每次拿出一只,不放回地拿出2只,則拿出的野生小鼠不是同一表征的概率為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義:若兩個(gè)橢圓的離心率相等,則稱兩個(gè)橢圓是“相似”的,如圖,橢圓與橢圓是相似的兩個(gè)橢圓,并且相交于上下兩個(gè)頂點(diǎn),橢圓的長(zhǎng)軸長(zhǎng)是4,橢圓,短軸長(zhǎng)是1,點(diǎn),分別是橢圓的左焦點(diǎn)與右焦點(diǎn).
(1)求橢圓,的方程;
(2)過(guò)的直線交橢圓于點(diǎn),,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】
如圖,長(zhǎng)方體ABCD–A1B1C1D1的底面ABCD是正方形,點(diǎn)E在棱AA1上,BE⊥EC1.
(1)證明:BE⊥平面EB1C1;
(2)若AE=A1E,求二面角B–EC–C1的正弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com