【題目】北京101中學(xué)校園內(nèi)有一個“少年湖”,湖的兩側(cè)有一個音樂教室和一個圖書館,如圖,若設(shè)音樂教室在A處,圖書館在B處,為測量A,B兩地之間的距離,某同學(xué)選定了與A,B不共線的C處,構(gòu)成△ABC,以下是測量的數(shù)據(jù)的不同方案:①測量∠A,AC,BC;②測量∠A,∠B,BC;③測量∠C,AC,BC;④測量∠A,∠C,∠B. 其中一定能唯一確定A,B兩地之間的距離的所有方案的序號是_______.
【答案】②③.
【解析】分析:由題意結(jié)合所給的條件確定三角形解的個數(shù)即可確定是否能夠唯一確定A,B兩地之間的距離.
詳解:考查所給的四個條件:
①測量∠A,AC,BC,已知兩邊及對角,由正弦定理可知,三角形有2個解,不能唯一確定點(diǎn)A,B兩地之間的距離;
②測量∠A,∠B,BC,已知兩角及一邊,由余弦定理可知,三角形有唯一的解,能唯一確定點(diǎn)A,B兩地之間的距離;
③測量∠C,AC,BC,已知兩邊及夾角,由余弦定理可知,三角形有唯一的解,能唯一確定點(diǎn)A,B兩地之間的距離;
④測量∠A,∠C,∠B,知道三個角度值,三角形有無數(shù)多組解,不能唯一確定點(diǎn)A,B兩地之間的距離;
綜上可得,一定能唯一確定A,B兩地之間的距離的所有方案的序號是②③.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某種商品在30天內(nèi)每克的銷售價格(元)與時間的函數(shù)圖像是如圖所示的兩條線段,(不包含,兩點(diǎn));該商品在 30 天內(nèi)日銷售量(克)與時間(天)之間的函數(shù)關(guān)系如下表所示.
第天 | 5 | 1 5 | 2 0 | 3 0 |
銷售量克 | 3 5 | 2 5 | 2 0 | 1 0 |
(1)根據(jù)提供的圖象,寫出該商品每克銷售的價格(元)與時間的函數(shù)關(guān)系式;
(2)根據(jù)表中數(shù)據(jù)寫出一個反映日銷售量隨時間變化的函數(shù)關(guān)系式;
(3)在(2)的基礎(chǔ)上求該商品的日銷售金額的最大值,并求出對應(yīng)的值.
(注:日銷售金額=每克的銷售價格×日銷售量)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是( )
A. ,y R,若x+y 0,則x 且y
B.a R,“ ”是“a>1”的必要不充分條件
C.命題“ x R,使得 ”的否定是“ R,都有 ”
D.“若 ,則a<b”的逆命題為真命題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知一元二次方程x2+(1+a)x+a+b+1=0的兩個實(shí)根為x1,x2,且0<x1<1,x2>1,則 的取值范圍是( )
A.(-2,- )
B.(-1,- )
C.(-2, )
D.(-1, )
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等差數(shù)列 有無窮項(xiàng),且每一項(xiàng)均為自然數(shù),若75,99,235為 中的項(xiàng),則下列自然數(shù)中一定是 中的項(xiàng)的是( )
A.2017
B.2019
C.2021
D.2023
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,a,b,c分別是∠A,∠B,∠C的對邊,已知a=c.
(1)若∠A=2∠B,求cosB;
(2)若AC=2,求△ABC面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在正四棱錐 中, 為頂點(diǎn) 在底面的射影, 為側(cè)棱 的中點(diǎn),且 ,則直線 與平面 所成的角是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐 中, 底面 分別是 的中點(diǎn), 在 ,且 .
(1)求證: 平面 ;
(2)在線段 上是否存在點(diǎn) ,使二面角 的大小為 ?若存在,求出 的長;
若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com