四棱錐P-ABCD的底面ABCD為正方形,且PD垂直于底面ABCD,數(shù)學(xué)公式,則三棱錐P-ANC與四棱錐P-ABCD的體積比為________.

1:6
分析:由于利用提及的分割原理可知四棱錐P-ABCD的體積為VP-ABCD=2VB-PAC,又由于 ,所以點N為PB的三等分點,所以利用利用體積公式及成比列可知VP-ABCD=6VN-PAC
解答:因為四棱錐P-ABCD的體積為:VP-ABCD=VB-PAC+VD-PAC而VB-PAC=VD-PAC,所以VP-ABCD=2VB-PAC,又由于 ,所以利用三棱錐的體積公式及三棱錐的體積具有定點可以輪換的原理可知:VB-PAC=3VN-PAC,所以VP-ABCD=6VN-PAC.所以
故三棱錐P-ANC與四棱錐P-ABCD的體積比為1:6
故答案為1:6.
點評:題考查了體積公式及成比列的性質(zhì),還考查了體積的分割原理,及三棱錐的體積定點可以進(jìn)行輪換法.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,四棱錐P-ABCD的底面是邊長為1的正方形,側(cè)棱PA⊥底面ABCD,且PA=2,E是PA的中點.
(Ⅰ)求四棱錐P-ABCD的體積;
(Ⅱ)求證:PC∥平面BDE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,四棱錐P-ABCD的底面是邊長為a的正方形,側(cè)棱PA⊥底面ABCD,側(cè)面PBC內(nèi)有BE⊥PC于E,且BE=
6
3
a,試在AB上找一點F,使EF∥平面PAD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,ABCD是正方形,O是該正方形的中心,P是平面ABCD外一點,PO⊥底面ABCD,E是PC的中點.求證:
(1)PA∥平面BDE;
(2)平面EBD⊥平面PAC;
(3)若PA=AB=4,求四棱錐P-ABCD的全面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

正四棱錐P-ABCD的高為PO,若Q為CD中點,且
OQ
=
PQ
+x
PC
+y
PA
(x,y∈R)
則x+y=
-1
-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知四棱錐P-ABCD的三視圖如圖所示,則這個四棱錐的體積為( 。
A、
1
3
B、1
C、
2
3
D、
4
3

查看答案和解析>>

同步練習(xí)冊答案