【題目】已知橢圓 的離心率為,以原點(diǎn)為圓心,橢圓C的短半軸長(zhǎng)為半徑的圓與直線相切.、是橢圓的左、右頂點(diǎn),直線點(diǎn)且與軸垂直.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)設(shè)是橢圓上異于、的任意一點(diǎn),作軸于點(diǎn),延長(zhǎng)到點(diǎn)使得,連接并延長(zhǎng)交直線于點(diǎn),為線段的中點(diǎn),判斷直線與以為直徑的圓的位置關(guān)系,并證明你的結(jié)論.

【答案】(Ⅰ);(Ⅱ)相切

【解析】試題分析:(1)根據(jù)點(diǎn)到直線距離公式得 ,再根據(jù)離心率得 (2) 設(shè),依次得Q,M,N坐標(biāo),即得QN方程,再利用點(diǎn)到直線距離公式得圓心到直線距離,最后根據(jù)圓心到直線距離與半徑關(guān)系確定直線與以為直徑的圓的位置關(guān)系

試題解析:(Ⅰ)由題意:到直線的距離為,則

橢圓C的標(biāo)準(zhǔn)方程為

(Ⅱ)設(shè),則

直線的方程為

聯(lián)立得:

則直線的方程為

方程可化為

到直線的距離為

故直線與以AB為直徑的圓O相切.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了普及環(huán)保知識(shí),增強(qiáng)環(huán)保意識(shí),某校從理科甲班抽取60人,從文科乙班抽取50人參加環(huán)保知識(shí)測(cè)試.

優(yōu)秀人數(shù)

非優(yōu)秀人數(shù)

總計(jì)

甲班

乙班

30

總計(jì)

60

(Ⅰ)根據(jù)題目完成列聯(lián)表,并據(jù)此判斷是否有的把握認(rèn)為環(huán)保知識(shí)成績(jī)優(yōu)秀與學(xué)生的文理分類有關(guān).

(Ⅱ)現(xiàn)已知, 三人獲得優(yōu)秀的概率分別為, , ,設(shè)隨機(jī)變量表示, , 三人中獲得優(yōu)秀的人數(shù),求的分布列及期望

附: ,

0.100

0.050

0.025

0.010

0.005

2.706

3.841

5.024

6.635

7.879

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某科研小組研究發(fā)現(xiàn):一棵水果樹的產(chǎn)量(單位:百千克)與肥料費(fèi)用(單位:百元)滿足如下關(guān)系: .此外,還需要投入其它成本(如施肥的人工費(fèi)等)百元.已知這種水果的市場(chǎng)售價(jià)為16元/千克(即16百元/百千克),且市場(chǎng)需求始終供不應(yīng)求.記該棵水果樹獲得的利潤(rùn)為(單位:百元).

(1)求的函數(shù)關(guān)系式;

當(dāng)投入的肥料費(fèi)用為多少時(shí),該水果樹獲得的利潤(rùn)最大?最大利潤(rùn)是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形都是邊長(zhǎng)為的正方形,點(diǎn)的中點(diǎn), 平面.

(1)求證 平面

(2)求證:平面平面;

(3)求平面與平面所成銳二面角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線 的焦點(diǎn)為,圓 .直線與拋物線交于點(diǎn)、兩點(diǎn),與圓切于點(diǎn).

(1)當(dāng)切點(diǎn)的坐標(biāo)為時(shí),求直線及圓的方程;

(2)當(dāng)時(shí),證明: 是定值,并求出該定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的兩個(gè)焦點(diǎn)分別為,短軸的兩個(gè)端點(diǎn)分別為.

(Ⅰ)若為等邊三角形,求橢圓的方程;

(Ⅱ)若橢圓的短軸長(zhǎng)為,過點(diǎn)的直線與橢圓相交于兩點(diǎn),且,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】濰坊文化藝術(shù)中心的觀光塔是濰坊市的標(biāo)志性建筑,某班同學(xué)準(zhǔn)備測(cè)量觀光塔的高度單位:米),如圖所示,垂直放置的標(biāo)桿的高度米,已知, .

1)該班同學(xué)測(cè)得一組數(shù)據(jù): ,請(qǐng)據(jù)此算出的值;

2該班同學(xué)分析若干測(cè)得的數(shù)據(jù)后,發(fā)現(xiàn)適當(dāng)調(diào)整標(biāo)桿到觀光塔的距離單位:米),使的差較大,可以提高測(cè)量精確度,若觀光塔高度為136米,問為多大時(shí), 的值最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知?jiǎng)狱c(diǎn) P 與定點(diǎn)的距離和它到定直線 x 4 的距離的比是1: 2 ,記動(dòng)點(diǎn) P 的軌跡為曲線 E.

(1)求曲線 E 的方程;

(2)設(shè) A 是曲線 E 上的一個(gè)點(diǎn),直線 AF 交曲線 E 于另一點(diǎn) B,以 AB 為邊作一個(gè)平行四邊形,頂點(diǎn) A、B、C、D 都在軌跡 E 上,判斷平行四邊形 ABCD 能否為菱形,并說明理由;

(3)當(dāng)平行四邊形 ABCD 的面積取到最大值時(shí),判斷它的形狀,并求出其最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= (m∈Z)為偶函數(shù),且在(0,+∞)上為增函數(shù).
(1)求m的值,并確定f(x)的解析式;
(2)若g(x)=loga[f(x)﹣ax](a>0且a≠1),是否存在實(shí)數(shù)a,使g(x)在區(qū)間[2,3]上的最大值為2,若存在,求出a的值,若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案