已知矩形中,平面,且,若在邊上存在一點(diǎn),使得,則的取值范圍是         
解:假設(shè)在BC邊上存在點(diǎn)Q,使得PQ⊥QD,
因?yàn)镻A⊥平面ABCD,所以PA⊥QD,又由于PQ⊥QD,
所以QD⊥平面APQ,則QD⊥AQ,即∠AQD=90°,
易得△ABQ∽△QCD,設(shè)BQ=X,所以有X(a-X)=1
即:x2-ax+1=0
所以當(dāng)△=a2-4≥0時(shí),上方程有解,
因此,當(dāng)a≥2時(shí),存在符合條件的點(diǎn)Q,否則不存在.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(13分)如圖,四棱錐的底面是正方形,,點(diǎn)在棱上.
(Ⅰ)求證:平面;   
(Ⅱ)當(dāng)的中點(diǎn)時(shí),求四面體體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿(mǎn)分14分)
如圖所示,在正三棱柱ABC -A1B1C1中,底面邊長(zhǎng)和側(cè)棱長(zhǎng)都是2,D是側(cè)棱CC1上任意一點(diǎn),E是A1B1的中點(diǎn)。

(I)求證:A1B1//平面ABD;
(II)求證:AB⊥CE;
(III)求三棱錐C-ABE的體積。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿(mǎn)分12分)如圖(1),△是等腰直角三角形,分別為的中點(diǎn),將△沿折起,使在平面上的射影恰好為的中點(diǎn),得到圖(2)。


(Ⅰ)求證:;(Ⅱ)求三棱錐的體積。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知某個(gè)三棱錐的三視圖如右,根據(jù)圖中標(biāo)出的尺寸(單位:),則這個(gè)三棱錐的體積是
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

一個(gè)體積為的正方體的頂點(diǎn)都在球面上,則球的表面積是      (    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題共2小題,每小題6分,滿(mǎn)分12分)
(1)已知梯形ABCD是直角梯形,按照斜二測(cè)畫(huà)法畫(huà)出它的直觀圖如圖所示,其中,,,求直角梯形以BC為旋轉(zhuǎn)軸旋轉(zhuǎn)一周形成的幾何體的表面積。
(2)定線段AB所在的直線與定平面α相交,P為直線AB外的一點(diǎn),且P不在α內(nèi),若直線AP、BP與α分別交于C、D點(diǎn),求證:不論P(yáng)在什么位置,直線CD必過(guò)一定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿(mǎn)分10分)已知圓臺(tái)的上下底面半徑分別是2、5,且側(cè)面面積等于兩底面面積之和,求該圓臺(tái)的母線長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

從長(zhǎng)方體一個(gè)頂點(diǎn)出發(fā)的三個(gè)面的面積分別為2、3、6,則它的體積為
A.6B.36 C.D.2

查看答案和解析>>

同步練習(xí)冊(cè)答案