已知f(x)=(x+1)(x-1)(x+2),求f′(x),f′(2),[f(2)]′

 

【答案】

f’(x)=3x+4x-1,   f’(2)=19,  [f”(2)]=0

【解析】

試題分析:解:根據(jù)題意,由于f(x)=(x+1)(x-1)(x+2),,則可知f’(x)="(x+1)’(x-1)(x+2),+" (x+1)[(x-1)(x+2)]’

=3x+4x-1,因此代入x=2,得到f’(2)=19, ,以及求解f(2)=12,可知f’(12)=0

考點:導數(shù)的計算

點評:考查了導數(shù)的運算,以及多項式函數(shù)的導數(shù)的求解運用,屬于基礎題。

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知f(x)=x+
bx
-3, x∈[1,2]

(1) b=2時,求f(x)的值域;
(2) b≥2時,f(x)的最大值為M,最小值為m,且滿足:M-m≥4,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=sin(x+
π
2
),g(x)=cos(x-
π
2
)
,則下列結論中正確的是( 。
A、函數(shù)y=f(x)•g(x)的最大值為1
B、函數(shù)y=f(x)•g(x)的對稱中心是(
2
+
π
4
,0),k∈Z
C、當x∈[-
π
2
,
π
2
]
時,函數(shù)y=f(x)•g(x)單調(diào)遞增
D、將f(x)的圖象向右平移
π
2
單位后得g(x)的圖象

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=
x+1,x∈[-1,0)
x2+1,x∈[0,1]
,則下列函數(shù)的圖象錯誤的是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知f(x)是定義在R上的奇函數(shù),當x≥0時,f(x)=x2-kx3.(k≥0)
(Ⅰ)求g(x)的解析式;
(Ⅱ)討論函數(shù)f(x)在區(qū)間(-∞,0)上的單調(diào)性;
(Ⅲ)若數(shù)學公式,設g(x)是函數(shù)f(x)在區(qū)間[0,+∞)上的導函數(shù),問是否存在實數(shù)a,滿足a>1并且使g(x)在區(qū)間數(shù)學公式上的值域為數(shù)學公式,若存在,求出a的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:2011年高三數(shù)學第一輪基礎知識訓練(20)(解析版) 題型:解答題

已知f(x)是定義在R上的奇函數(shù),當x≥0時,f(x)=x2-kx3.(k≥0)
(Ⅰ)求g(x)的解析式;
(Ⅱ)討論函數(shù)f(x)在區(qū)間(-∞,0)上的單調(diào)性;
(Ⅲ)若,設g(x)是函數(shù)f(x)在區(qū)間[0,+∞)上的導函數(shù),問是否存在實數(shù)a,滿足a>1并且使g(x)在區(qū)間上的值域為,若存在,求出a的值;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案