已知
lim
x→1
x2-2x-5
ax2
=-
6
5
,則a值為( 。
A、-
6
5
B、-
5
6
C、-5
D、5
分析:根據(jù)函數(shù)的極限的求解可得
lim
x→1
x2-2x-5
ax2
=
-6
a
,根據(jù)已知從而可求.
解答:解:∵
lim
x→1
 
x2-2x-5
ax2
 =
-6
a
=-
6
5

∴a=5
故選D.
點(diǎn)評(píng):本題主要考查了極限及其基本運(yùn)算,是基本公式的應(yīng)用,屬于基礎(chǔ)試題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

下面有四個(gè)命題:
①若
a
,
b
為一平面內(nèi)兩非零向量,則
a
b
是|
a
+
b
|=|
a
-
b
|的充要條件;
②一平面內(nèi)兩條曲線的方程分別是f1(x,y)=0,f2(x,y)=0,它們的交點(diǎn)是P(x0,y0),則方程f1(x,y)+f2(x,y)=0的曲線經(jīng)過點(diǎn)P;
③經(jīng)過一定點(diǎn)且和一條已知直線垂直的所有直線都在同一平面內(nèi);
lim
x→1
x2+b
x-1
=2,則b=-1.
其中真命題的序號(hào)是
 
(把符合要求的命題序號(hào)都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
lim
x→1
x2+ax+2
x-1
=b
,則函數(shù)y=-x2+ax+b單調(diào)遞減區(qū)間是
[-
3
2
,+∞
[-
3
2
,+∞

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•廣西一模)已知函數(shù)f(x)=
(x+b)ex(x<0)
x3+2a(x≥0)
(a≠0)
在點(diǎn)x=0處連續(xù),則
lim
x→∞
[
1
x2-x
-
b
a(x2-2x)
]
=(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知
lim
x→1
x2+ax+2
x-1
=b
,則函數(shù)y=-x2+ax+b單調(diào)遞減區(qū)間是______.

查看答案和解析>>

同步練習(xí)冊(cè)答案