已知數(shù)列的前項和,數(shù)列滿足.
(1)求
(2)求證數(shù)列是等差數(shù)列,并求數(shù)列的通項公式;
(3)設(shè),數(shù)列的前項和為,求滿足的的最大值.
(1);(2)證明詳見解析,;(3)的最大值為.
解析試題分析:(1)根據(jù)條件中,可令,結(jié)合,即可得:;(2)欲證是等差數(shù)列,而條件中,因此可以首先根據(jù)數(shù)列滿足的條件探究與滿足的關(guān)系,進而可以得到數(shù)列中與滿足的關(guān)系:當(dāng)時,,
∴,即,∴,
又∵ ,∴,而,∴是以為首項,為公差的等差數(shù)列,;
(3)由(2)結(jié)合條件,可得,因此可以考慮采用裂項相消法求數(shù)列的前項和:,從而可將轉(zhuǎn)化為關(guān)于的不等式:,結(jié)合,即可知的最大值為.
試題解析:(1)∵,∴令n=1,;
(2)證明:在中,當(dāng)時,,
∴,即,∴,
又∵ ,∴,而,∴是以為首項,為公差的等差數(shù)列,
∴,∴;
(3)由(2)及 ,∴cn=log2=log22n=n,
∴,∴ ,
∴,
又∵,∴的最大值為.
考點:1.等差數(shù)列的證明;2.求數(shù)列的通項公式;3.裂項相消法求數(shù)列的和.
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知等差數(shù)列{an}中,a1=1,a3=-3.
(1)求數(shù)列{an}的通項公式;
(2)若數(shù)列{an}的前k項和Sk=-35,求k的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知等差數(shù)列滿足:,的前項和為.
(1)求及;
(2)令(其中為常數(shù),且),求證數(shù)列為等比數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)數(shù)列的前項和為,對一切,點都在函數(shù)的圖象上
(1)求歸納數(shù)列的通項公式(不必證明);
(2)將數(shù)列依次按1項、2項、3項、4項循環(huán)地分為(),,,;,,,;,…..,
分別計算各個括號內(nèi)各數(shù)之和,設(shè)由這些和按原來括號的前后順序構(gòu)成的數(shù)列為,
求的值;
(3)設(shè)為數(shù)列的前項積,若不等式對一切都成立,其中,求的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列的前項和為,,是與的等差中項().
(1)求數(shù)列的通項公式;
(2)是否存在正整數(shù),使不等式恒成立,若存在,求出
的最大值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
已知數(shù)列的前項和為,,,,其中為常數(shù),
(I)證明:;
(II)是否存在,使得為等差數(shù)列?并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
數(shù)列的前項和記為,,.
(1)求證是等比數(shù)列,并求的通項公式;
(2)等差數(shù)列的各項為正,其前項和為,且,又 成等比數(shù)列,求.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com