【題目】如圖所示,ABCD為矩形,PA⊥平面ABCD,PA=AD,M,N,Q分別是PC,AB,CD的中點(diǎn).
求證:(1)MN∥平面PAD;
(2)平面QMN∥平面PAD.
【答案】(1)見解析
(2)見解析
【解析】
(1)如圖以A為原點(diǎn),以AB,AD,AP所在直線為坐標(biāo)軸建立空間直角坐標(biāo)系,
設(shè)B(b,0,0),D(0,d,0),P(0,0,d),則C(b,d,0),,求出,因?yàn)槠矫?/span>PAD的一個法向量為m=(1,0,0),, 所以·m=0,即⊥m.,利用直線與平面平行的判定定理,可證MN∥平面PAD.
(2)=(0,-d,0),⊥m,,又QN不在平面PAD內(nèi),又QN∥平面PAD.,即可得證.
(1) 證明:如圖以A為原點(diǎn),以AB,AD,AP所在直線為坐標(biāo)軸建立空間直角坐標(biāo)系,
設(shè)B(b,0,0),D(0,d,0),P(0,0,d),則C(b,d,0),
因?yàn)?/span>M,N,Q分別是PC,AB,CD的中點(diǎn),
所以M,N,Q,
所以.
因?yàn)槠矫?/span>PAD的一個法向量為m=(1,0,0),
所以·m=0,即⊥m.
因?yàn)?/span>MN不在平面PAD內(nèi),故MN∥平面PAD.
(2)=(0,-d,0),⊥m,
又QN不在平面PAD內(nèi),又QN∥平面PAD.
又因?yàn)?/span>MN∩QN=N,所以平面MNQ∥平面PAD
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知{e1,e2,e3}是空間的一個基底,且=e1+2e2-e3,=-3e1+e2+2e3,=e1+e2-e3,試判斷{}能否作為空間的一個基底?若能,試以此基底表示向量=2e1-e2+3e3;若不能,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x3-x2+cx+d有極值.
(1)求實(shí)數(shù)c的取值范圍;
(2)若f(x)在x=2處取得極值,且當(dāng)x<0時,f(x)<d2+2d恒成立,求實(shí)數(shù)d的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知向量 =(cosωx﹣sinωx,sinωx), =(﹣cosωx﹣sinωx,2 cosωx),設(shè)函數(shù)f(x)= +λ(x∈R)的圖象關(guān)于直線x=π對稱,其中ω,λ為常數(shù),且ω∈( ,1)
(1)求函數(shù)f(x)的最小正周期;
(2)若y=f(x)的圖象經(jīng)過點(diǎn)( ,0)求函數(shù)f(x)在區(qū)間[0, ]上的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1,∠ACB=45°,BC=3,過動點(diǎn)A作AD⊥BC,垂足D在線段BC上且異于點(diǎn)B,連接AB,沿AD將△ABD折起,使∠BDC=90°(如圖2所示),
(1)當(dāng)BD的長為多少時,三棱錐A﹣BCD的體積最大;
(2)當(dāng)三棱錐A﹣BCD的體積最大時,設(shè)點(diǎn)E,M分別為棱BC,AC的中點(diǎn),試在棱CD上確定一點(diǎn)N,使得EN⊥BM,并求EN與平面BMN所成角的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= sinωx+cosωx(ω>0)的圖象與x軸交點(diǎn)的橫坐標(biāo)構(gòu)成一個公差為 的等差數(shù)列,把函數(shù)f(x)的圖象沿x軸向左平移 個單位,得到函數(shù)g(x)的圖象.關(guān)于函數(shù)g(x),下列說法正確的是( )
A.在[ , ]上是增函數(shù)
B.其圖象關(guān)于直線x=﹣ 對稱
C.函數(shù)g(x)是奇函數(shù)
D.當(dāng)x∈[ , π]時,函數(shù)g(x)的值域是[﹣2,1]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知各項(xiàng)均為正數(shù)的數(shù)列{an}滿足:Sn為數(shù)列{an}的前n項(xiàng)和,且2,an , Sn成等差數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若cn=nan , 求數(shù)列{cn}的前n項(xiàng)和Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖, 平面平面為等邊三角形,, 過作平面交分別于點(diǎn),設(shè).
(1)求證:平面;
(2)求的值, 使得平面與平面所成的銳二面角的大小為.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】兩臺車床加工同一種機(jī)械零件如下表:
分類 | 合格品 | 次品 | 總計(jì) |
第一臺車床加工的零件數(shù) | 35 | 5 | 40 |
第二臺車床加工的零件數(shù) | 50 | 10 | 60 |
總計(jì) | 85 | 15 | 100 |
從這100個零件中任取一個零件,求:
(1)取得合格品的概率;
(2)取得零件是第一臺車床加工的合格品的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com