【題目】若正數(shù)x,y滿足15x﹣y=22,則x3+y3﹣x2﹣y2的最小值為

【答案】1
【解析】解:由正數(shù)x,y滿足15x﹣y=22,可得y=15x﹣22>0,則x> ,y>0, 又x3+y3﹣x2﹣y2=(x3﹣x2)+(y3﹣y2),
其中y3﹣y2+ y=y(y2﹣y+ )=y(y﹣ 2≥0,
即y3﹣y2≥﹣ y,
當(dāng)且僅當(dāng)y= 時(shí)取得等號(hào),
設(shè)f(x)=x3﹣x2 , f(x)的導(dǎo)數(shù)為f′(x)=3x2﹣2x=x(3x﹣2),
當(dāng)x= 時(shí),f(x)的導(dǎo)數(shù)為 ×( ﹣2)= ,
可得f(x)在x= 處的切線方程為y= x﹣
由x3﹣x2 x﹣ (x﹣ 2(x+2)≥0,
當(dāng)x= 時(shí),取得等號(hào).
則x3+y3﹣x2﹣y2=(x3﹣x2)+(y3﹣y2)≥ x﹣ y≥ =1.
當(dāng)且僅當(dāng)x= ,y= 時(shí),取得最小值1.
故答案為:1.
由題意可得x> ,y>0,又x3+y3﹣x2﹣y2=(x3﹣x2)+(y3﹣y2),求出y3﹣y2≥﹣ y,當(dāng)且僅當(dāng)y= 時(shí)取得等號(hào),設(shè)f(x)=x3﹣x2 , 求出導(dǎo)數(shù)和單調(diào)區(qū)間、極值和最值,即可得到所求最小值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2018年高考特別強(qiáng)調(diào)了要增加對(duì)數(shù)學(xué)文化的考查,為此某校高三年級(jí)特命制了一套與數(shù)學(xué)文化有關(guān)的專題訓(xùn)練卷(文、理科試卷滿分均為100分),并對(duì)整個(gè)高三年級(jí)的學(xué)生進(jìn)行了測(cè)試,現(xiàn)從這些學(xué)生中隨機(jī)抽取了50名學(xué)生的成績(jī),按照成績(jī)?yōu)?/span>,,…,分成了5組,制成了如圖所示的頻率分布直方圖(假定每名學(xué)生的成績(jī)均不低于50分).

(Ⅰ)求頻率分布直方圖中的的值,并估計(jì)所抽取的50名學(xué)生成績(jī)的中位數(shù)(用分?jǐn)?shù)表示);

(Ⅱ)若利用分層抽樣的方法從樣本中成績(jī)不低于70分的三組學(xué)生中抽取6人,再?gòu)倪@6人中隨機(jī)抽取2人參加這次考試的考后分析會(huì),試求組中至少有1人被抽到的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱柱ABC﹣A1B1C1中,AA1C1C是邊長(zhǎng)為4的正方形.平面ABC⊥平面AA1C1C,AB=3,BC=5.

(Ⅰ)求證:AA1⊥平面ABC;

(Ⅱ)求證二面角A1﹣BC1﹣B1的余弦值;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(Ⅰ)若,求證:函數(shù)在(1+∞)上是增函數(shù);

(Ⅱ)求函數(shù)[1,e]上的最小值及相應(yīng)的.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(Ⅰ)求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)證明當(dāng)時(shí),關(guān)于的不等式恒成立;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法正確的是( )

A. 一枚骰子擲一次得到2點(diǎn)的概率為,這說(shuō)明一枚骰子擲6次會(huì)出現(xiàn)一次2點(diǎn)

B. 某地氣象臺(tái)預(yù)報(bào)說(shuō),明天本地降水的概率為70%,這說(shuō)明明天本地有70%的區(qū)域下雨,30%的區(qū)域不下雨

C. 某中學(xué)高二年級(jí)有12個(gè)班,要從中選2個(gè)班參加活動(dòng),由于某種原因,一班必須參加,另外再?gòu)亩潦嘀羞x一個(gè)班,有人提議用如下方法:擲兩枚骰子得到的點(diǎn)數(shù)是幾,就選幾班,這是很公平的方法

D. 在一場(chǎng)乒乓球賽前,裁判一般用擲硬幣猜正反面來(lái)決定誰(shuí)先打球,這應(yīng)該說(shuō)是公平的

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形是直角梯形,,,,又,,,直線與直線所成的角為.

(1)求證:平面平面;

(2)(文科)求三棱錐的體積.

(理科)求二面角平面角正切值的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,三角形PDC所在的平面與長(zhǎng)方形ABCD所在的平面垂直,PD=PC=4,AB=6,BC=3.點(diǎn)ECD邊的中點(diǎn),點(diǎn)F,G分別在線段AB,BC,AF=2FB,CG=2GB.

(1)證明:PE⊥FG;

(2)求二面角PADC的正切值;

(3)求直線PA與直線FG所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了實(shí)現(xiàn)綠色發(fā)展,避免浪費(fèi)能源,耨市政府計(jì)劃對(duì)居民用電采用階梯收費(fèi)的方法.為此,相關(guān)部門(mén)在該市隨機(jī)調(diào)查了20戶居民六月份的用電量(單位和家庭收入(單位:萬(wàn)元),以了解這個(gè)城市家庭用電量的情況

用電量數(shù)據(jù)如下:18,63,72,82,93,98,106,110,118,130,134,139,147,163,180,194,212,237,260,324.

對(duì)應(yīng)的家庭收入數(shù)據(jù)如下:0.21,0.24,0.35,0.40,0.52,0.60,0.58,0.65,0.65,0.63,0.68,0.80,0.83,0.93,0.97,0.96,1.1,1.2,1.5,1.8.

(1)根據(jù)國(guó)家發(fā)改委的指示精神,該市計(jì)劃實(shí)施3階階梯電價(jià),使75%的用戶在第一檔,電價(jià)為0.56元/;的用戶在第二檔,電價(jià)為0.61元/;的用戶在第三檔,電價(jià)為0.86元/;試求出居民用電費(fèi)用與用電量間的函數(shù)關(guān)系式;

(2)以家庭收入為橫坐標(biāo),電量為縱坐標(biāo)作出散點(diǎn)圖(如圖),關(guān)于的回歸直線方程(回歸直線方程的系數(shù)四舍五入保留整數(shù));

(3)小明家的月收入7000元,按上述關(guān)系,估計(jì)小明家月支出電費(fèi)多少元

參考數(shù)據(jù),,,

參考公式一組相關(guān)數(shù)據(jù)的回歸直線方程的斜率和截距的最小二乘法估計(jì)分別為,,其中為樣本均值

查看答案和解析>>

同步練習(xí)冊(cè)答案