某工廠生產(chǎn)甲、乙兩種產(chǎn)品,每種產(chǎn)品都是經(jīng)過第一和第二道工序加工而成,兩道工序的加工結(jié)果相互獨(dú)立,每道工序的加工結(jié)果均有A、B兩個(gè)等級(jí).對(duì)每種產(chǎn)品,兩道工序的加工結(jié)果都為A級(jí)時(shí),產(chǎn)品為一等品,其余均為二等品.
(1)已知甲、乙兩種產(chǎn)品每一道工序的加工結(jié)果為A級(jí)的概率如表一所示,分別求生產(chǎn)出的甲、乙產(chǎn)品為一等品的概率P甲、P乙.
(2)已知一件產(chǎn)品的利潤如表二所示,用ξ、η分別表示一件甲、乙產(chǎn)品的利潤,在(1)的條件下,求ξ、η的分布列及Eξ、Eη.
(3)已知生產(chǎn)一件產(chǎn)品需用的工人數(shù)和獎(jiǎng)金額如表三所示,該工廠有工人40名,可用資金60萬元.設(shè)x、y分別表示生產(chǎn)甲、乙產(chǎn)品的數(shù)量,在(2)的條件下,x、y為何值時(shí),z=xEξ+yEη最大?最大值是多少?(解答時(shí)需給出圖示)
解:(1)P甲=0.8×0.85=0.68, P乙=0.75×0.8=0.6. (2)隨機(jī)變量ξ、η的分布列是: Eξ=5×0.68+2.5×0.32=4.2, Eη=2.5×0.6+1.5×0.4=2.1. (3)由題設(shè)知 目標(biāo)函數(shù)為z=xEξ+yEη=4.2x+2.1y. 作出可行域(如圖),作直線l:4.2x+2.1y=0,將l向右上方平移至l1的位置時(shí),直線經(jīng)過可行域上點(diǎn)M,點(diǎn)與原點(diǎn)距離最大,此時(shí)z=4.2x+2.1y取最大值. 解方程組 得x=4,y=4. 即x=4,y=4時(shí),z取最大值,z的最大值為25.2. 思路分析:本題主要綜合考查了相互獨(dú)立事件的概率、隨機(jī)變量的分布列及期望、線性規(guī)劃模型的建立與求解等知識(shí).可以通過建立一個(gè)簡單的數(shù)學(xué)模型來解決. |
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
用煤(噸) | 用電(千瓦) | 產(chǎn)值(萬元) | |
生產(chǎn)一噸甲種產(chǎn)品 | 7 | 2 | 8 |
生產(chǎn)一噸乙種產(chǎn)品 | 3 | 5 | 11 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com