【題目】2018年國際山地旅游大會于10月14日在貴州召開,據(jù)統(tǒng)計有來自全世界的4000名女性和6000名男性徒步愛好者參與徒步運動,其中抵達終點的女性與男性徒步愛好者分別為1000名和2000名,抵達終點的徒步愛好者可獲得紀念品一份。若記者隨機電話采訪參與本次徒步運動的1名女性和1名男性徒步愛好者,其中恰好有1名徒步愛好者獲得紀念品的概率是( )

A. B. C. D.

【答案】C

【解析】

有兩種情況,采訪的兩個人中:男性獲得紀念品,女性沒有獲得紀念品;男性沒有獲得紀念品,女性獲得紀念品.按照分步乘法計數(shù)原理計算每種情況的概率,再按分類加法計數(shù)原理相加,得到所求的概率.

“男性獲得紀念品,女性沒有獲得紀念品”的概率為,“男性沒有獲得紀念品,女性獲得紀念品” 的概率為,故“恰好有名徒步愛好者獲得紀念品的概率為.故選C.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在正四棱臺中,,分別是的中點.

1)求證:平面平面;

2)求證:平面.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知向量是平面內(nèi)的一組基向量,內(nèi)的定點,對于內(nèi)任意一點,時,則稱有序?qū)崝?shù)對為點的廣義坐標,若點、的廣義坐標分別為,對于下列命題:

線段、的中點的廣義坐標為

A、兩點間的距離為;

向量平行于向量的充要條件是;

向量垂直于向量的充要條件是.

其中的真命題是________(請寫出所有真命題的序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校數(shù)學課外興趣小組為研究數(shù)學成績是否與性別有關,先統(tǒng)計本校高三年級每個學生一學期數(shù)學成績平均分(采用百分制),剔除平均分在40分以下的學生后,共有男生300名,女生200名.現(xiàn)采用分層抽樣的方法,從中抽取了100名學生,按性別分為兩組,并將兩組學生成績分為6組,得到如下所示頻數(shù)分布表.

分數(shù)段

[40,50)

[50,60)

[60,70)

[70,80)

[80,90)

[90,100]

3

9

18

15

6

9

6

4

5

10

13

2

(1)估計男、女生各自的平均分(同一組數(shù)據(jù)用該組區(qū)間中點值作代表),從計算結(jié)果看,數(shù)學成績與性別是否有關;

(2)規(guī)定80分以上為優(yōu)分(含80分),請你根據(jù)已知條件作出2×2列聯(lián)表,并判斷是否有90%以上的把握認為“數(shù)學成績與性別有關”.

優(yōu)分

非優(yōu)分

合計

男生

女生

附表及公式:

0.100

0.050

0.010

0.001

k

2.706

3.841

6.635

10.828

.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】、、均為正整數(shù),且為一素數(shù),、進制表示分別為,其中,.證明:

(1)若,且對整數(shù) 均有,則,其中,表示不超過實數(shù)的最大整數(shù).

(2) ,其中,表示集合A中元素的個數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校為了診斷高三學生在市一模考試中文科數(shù)學備考的狀況,隨機抽取了50名學生的市一模數(shù)學成績進行分析,將這些成績分為九組,第一組[6070),第二組[70,80)……,第九組[140150],并繪制了如圖所示的頻率分布直方圖.

1)試求出的值并估計該校文科數(shù)學成績的眾數(shù)和中位數(shù);

2)現(xiàn)從成績在[120150]的同學中隨機抽取2人進行談話,那么抽取的2人中恰好有一人的成績在[130,140)中的概率是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】甲、乙兩名射擊運動員一次射擊命中目標的概率分別是0.7,0.6,且每次射擊命中與否相互之間沒有影響,求:

1)甲射擊三次,第三次才命中目標的概率;

2)甲、乙兩人在第一次射擊中至少有一人命中目標的概率;

3)甲、乙各射擊兩次,甲比乙命中目標的次數(shù)恰好多一次的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列說法正確的是( )

A. 命題都是假命題,則命題“”為真命題.

B. ,函數(shù)都不是奇函數(shù).

C. 函數(shù)的圖像關于對稱 .

D. 將函數(shù)的圖像上所有點的橫坐標伸長到原來的2倍后得到

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),直線是曲線的一條切線

(1)求實數(shù)a的值;

(2)若對任意的x(0,),都有,求整數(shù)k的最大值.

查看答案和解析>>

同步練習冊答案