某超市為了解顧客的購物量及結(jié)算時間等信息,安排一名員工隨機收集了在該超市購物的100位顧客的相關(guān)數(shù)據(jù),如下表所示.

一次
購物量
1至
4件
5至
8件
9至
12件
13至
16件
17件及
以上
顧客數(shù)(人)
x
30
25
y
10
結(jié)算時間
(分鐘/人)
1
1.5
2
2.5
3
 
已知這100位顧客中一次購物量超過8件的顧客占55%.
(1)確定x,y的值,并估計顧客一次購物的結(jié)算時間的平均值;
(2)求一位顧客一次購物的結(jié)算時間不超過2分鐘的概率.(將頻率視為概率)

(1)1.9(分鐘)   (2)

解析

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

一個均勻的正方體玩具,各個面上分別寫有1,2,3,4,5,6,將這個玩具先后拋擲2次,求:
(1)朝上的一面數(shù)相等的概率;(2)朝上的一面數(shù)之和小于5的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分13分)把一顆質(zhì)地均勻,四個面上分別標有復(fù)數(shù),,,為虛數(shù)單位)的正四面體玩具連續(xù)拋擲兩次,第一次出現(xiàn)底面朝下的復(fù)數(shù)記為,第二次出現(xiàn)底面朝下的復(fù)數(shù)記為
(1)用表示“”這一事件,求事件的概率;
(2)設(shè)復(fù)數(shù)的實部為,求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某地區(qū)有小學(xué)21所,中學(xué)14所,大學(xué)7所,現(xiàn)采用分層抽樣的方法從這些學(xué)校中抽取6所學(xué)校對學(xué)生進行視力調(diào)查.
(1)求應(yīng)從小學(xué)、中學(xué)、大學(xué)中分別抽取的學(xué)校數(shù)目;
(2)若從抽取的6所學(xué)校中隨機抽取2所學(xué)校做進一步數(shù)據(jù)分析,
①列出所有可能的抽取結(jié)果;
②求抽取的2所學(xué)校均為小學(xué)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

一款擊鼓小游戲的規(guī)則如下:每盤游戲都需要擊鼓三次,每次擊鼓要么出現(xiàn)一次音樂,要么不出現(xiàn)音樂;每盤游戲擊鼓三次后,出現(xiàn)一次音樂獲得10分,出現(xiàn)兩次音樂獲得20分,出現(xiàn)三次音樂獲得100分,沒有出現(xiàn)音樂則扣除200分(即獲得分).學(xué)科網(wǎng)設(shè)每次擊鼓出現(xiàn)音樂的概率為,且各次擊鼓出現(xiàn)音樂相互獨立.
(1)設(shè)每盤游戲獲得的分數(shù)為,求的分布列;
(2)玩三盤游戲,至少有一盤出現(xiàn)音樂的概率是多少?
(3)玩過這款游戲的許多人都發(fā)現(xiàn),若干盤游戲后,與最初的分數(shù)相比,分數(shù)沒有增加反而減少了.請運用概率統(tǒng)計的相關(guān)知識分析分數(shù)減少的原因.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

為了解某班關(guān)注NBA(美國職業(yè)籃球)是否與性別有關(guān),對某班48人進行了問卷調(diào)查得到如下的列聯(lián)表:

 
關(guān)注NBA
不關(guān)注NBA
合計
男生
 
6
 
女生
10
 
 
合計
 
 
48
 
已知在全班48人中隨機抽取1人,抽到關(guān)注NBA的學(xué)生的概率為.
(1)請將上面的表補充完整(不用寫計算過程),并判斷是否有95%的把握認為關(guān)注NBA與性別有關(guān)?說明你的理由;
(2)設(shè)甲,乙是不關(guān)注NBA的6名男生中的兩人,丙,丁,戊是關(guān)注NBA的10名女生中的3人,從這5人中選取2人進行調(diào)查,求:甲,乙至少有一人被選中的概率.
答題參考
P(K2≥k)
0.10
0.05
0.010
0.005
k0
2.706
3.841
6.635
7.879
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在某學(xué)校組織的一次籃球定點投籃訓(xùn)練中,規(guī)定每人最多投3次:在A處每投進一球得3分,在B處每投進一球得2分;如果前兩次得分之和超過3分即停止投籃,否則投第三次。某同學(xué)在A處的命中率q1為0.25,在B處的命中率為q2,該同學(xué)選擇先在A處投一球,以后都在B處投,用ξ表示該同學(xué)投籃訓(xùn)練結(jié)束后所得的總分,其分布列為

ξ
0
2
3
4
5
P
0.03
P1
P2
P3
P4
 
(1)求q2的值;
(2)求隨機變量ξ的數(shù)學(xué)期望E(ξ);
(3)試比較該同學(xué)選擇都在B處投籃得分超過3分與選擇上述方式投籃得分超過3分的概率的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(2014·洛陽模擬)現(xiàn)有一批產(chǎn)品共有10件,其中8件為正品,2件為次品.
(1)如果從中取出一件,然后放回,再取一件,求連續(xù)3次取出的都是正品的概率.
(2)如果從中一次取3件,求3件都是正品的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知關(guān)于x的一元二次方程x2-2(a-2)x-b2+16=0.
(1)若a,b是一枚骰子先后投擲兩次所得到的點數(shù),求方程有兩個正實數(shù)根的概率;
(2)若a∈[2,6],b∈[0,4],求一元二次方程沒有實數(shù)根的概率.

查看答案和解析>>

同步練習(xí)冊答案