若對(duì)于任意x∈R,都有(m-2)x2-2 (m-2)x-4<0恒成立,求實(shí)數(shù)m的取值范圍.
分析:對(duì)二次項(xiàng)系數(shù)m-2分類討論,當(dāng)m-2=0時(shí),恒成立,當(dāng)m-2≠0時(shí),轉(zhuǎn)化為二次函數(shù)恒成立問(wèn)題,利用二次函數(shù)的性質(zhì),列出不等關(guān)系,求解即可得到m的取值范圍.
解答:解:∵對(duì)于任意x∈R,都有(m-2)x2-2 (m-2)x-4<0恒成立,
①當(dāng)m-2=0,即m=2時(shí),不等式為-4<0對(duì)任意x∈R恒成立,
∴m=2符合題意;
②當(dāng)m-2≠0,即m≠2時(shí),(m-2)x2-2 (m-2)x-4<0對(duì)于任意x∈R恒成立,
m-2<0
[-2(m-2)]2-4(m-2)×(-4)<0
,即
m<2
-2<m<2
,
∴-2<m<2;
綜合①②,可得實(shí)數(shù)m的取值范圍是-2<m≤2.
點(diǎn)評(píng):本題考查了不等式恒成立問(wèn)題,對(duì)于不等式恒成立問(wèn)題一般選用參變量分離法、最值法、數(shù)形結(jié)合法求解.本題解題過(guò)程中運(yùn)用了二次函數(shù)的性質(zhì)和分類討論的數(shù)學(xué)思想方法.對(duì)于二次函數(shù)問(wèn)題特別要注意對(duì)開口方向和對(duì)稱軸以及判別式的研究.屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若對(duì)于任意x∈R,都有(m-2)x2-2(m-2)x-4<0恒成立,則實(shí)數(shù)m的取值范圍是
(-2,2]
(-2,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)是(-∞,+∞)上的奇函數(shù),x∈[0,2)時(shí),f(x)=x2,若對(duì)于任意x∈R,都有f(x+4)=f(x),則f(2)-f(3)的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年江西省贛州市南康中學(xué)高二(上)周考數(shù)學(xué)試卷(4)(文科)(解析版) 題型:填空題

若對(duì)于任意x∈R,都有(m-2)x2-2(m-2)x-4<0恒成立,則實(shí)數(shù)m的取值范圍是   

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:《第1章 集合與函數(shù)概念》2009年單元測(cè)試卷(忠州中學(xué))(解析版) 題型:填空題

若對(duì)于任意x∈R,都有(m-2)x2-2(m-2)x-4<0恒成立,則實(shí)數(shù)m的取值范圍是   

查看答案和解析>>

同步練習(xí)冊(cè)答案