求過兩直線3x+4y-2=0和2x+y+2=0的交點(diǎn)且與直線3x-2y+4=0垂直的直線方程.
【答案】分析:由已知中直線3x+4y-2=0和2x+y+2=0的方程,我們聯(lián)立方程組,可以求出其交點(diǎn)坐標(biāo),進(jìn)而根據(jù)所求直線于直線3x-2y+4=0垂直,設(shè)出直線方程,將交點(diǎn)坐標(biāo)代入,即可得到所求直線的方程.
解答:解:設(shè)與直線3x-2y+4=0垂直的直線方程為2x+3y+a=0,(a∈R)…(3分)
由 可以得到故交點(diǎn)的坐標(biāo)為 (-2,2)…(6分)
又由于交點(diǎn)在所求直線上,因此 2×(-2)+3×2+a=0,(a∈R)
從而a=-2…(9分)
故所求的直線方程為2x+3y-2=0.…(12分)
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是直線的一般式方程與直線的垂直關(guān)系,兩條直線的交點(diǎn)坐標(biāo),其中根據(jù)兩直線垂直時(shí)一般式方程的系數(shù)關(guān)系,設(shè)出所求直線的解析式,是解答本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

求過兩直線3x+4y-2=0和2x+y+2=0的交點(diǎn)且與直線3x-2y+4=0垂直的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

求過兩直線3x+4y-2=0和2x+y+2=0的交點(diǎn)且與直線3x-2y+4=0垂直的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年河北省邯鄲市高一(下)期末數(shù)學(xué)試卷(解析版) 題型:解答題

求過兩直線3x+4y-2=0和2x+y+2=0的交點(diǎn)且與直線3x-2y+4=0垂直的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求與兩直線3x-4y-7=0和12x-5y+6=0的夾角相等,并且過點(diǎn)P(4,5)的直線方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案