已知數(shù)列{an}中,a1=1,且an+1=
2an
2+an
,n∈N+
(1)求a1,a2,a3的值;
(2)歸納數(shù)列{an}的通項公式,并用數(shù)學(xué)歸納法證明.
考點:數(shù)學(xué)歸納法
專題:綜合題,點列、遞歸數(shù)列與數(shù)學(xué)歸納法
分析:(1)由a1=1,且an+1=
2an
2+an
,代入計算,可得a1,a2,a3的值;
(2)由(1)猜想猜想它的通項公式,再利用數(shù)學(xué)歸納法的證題步驟進行證明.
解答: 解:(1)∵a1=1,且an+1=
2an
2+an

∴a1=1,a2=
2
3
,a3=
1
2
;
(2)由(1)猜想an=
2
n+1

下面用數(shù)學(xué)歸納法證明之,
①當n=1時,a1=1,結(jié)論成立;
②假設(shè)n=k(k≥1)時,結(jié)論成立,即ak=
2
k+1
,則
n=k+1時,ak+1=
2ak
2+ak
=
4
k+1
2+
2
k+1
=
2
(k+1)+1
,
所以當n=k+1等式成立
根據(jù)①②得an=
2
n+1
成立.
點評:此題主要考查歸納法的證明,歸納法一般三個步驟:(1)驗證n=1成立;(2)假設(shè)n=k成立;(3)利用已知條件證明n=k+1也成立,從而求證,這是數(shù)列的通項一種常用求解的方法.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某種產(chǎn)品的廣告費支出x與銷售額y(單位:萬元)之間有下表關(guān)系
x 2 4 5 6 8
y 30 40 60 50 70
y與x的線性回歸方程為
y
=6.5x+a,當廣告支出是3萬元時,則銷售額大約為( 。
A、36B、37C、39D、40

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,BC=
2
,AC=1,以AB為邊作等腰直角三角形ABD(B為直角頂點,C、D兩點在直線AB的兩側(cè)).當∠C變化時,線段CD長的最大值為( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,四棱錐P-ABCD的底面是正方形,PD⊥底面ABCD,點E在棱PB上.
(1)求證:平面AEC⊥平面PDB;
(2)當PD=
2
AB=2,且VA-PED=
1
3
時,確定點E的位置,即求出
PE
EB
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,圓O1和圓O2的半徑都等于1,|O1O2|=6,過動點P分別作圓O1、圓O2的切線PM、PN(M、N分別為切點),使得|PM|=
3
|PN|.試建立平面直角坐標系,并求動點P的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a為實常數(shù),y=f(x)是定義在R上的奇函數(shù),當x<0時,f(x)=9x+
a2
x
+7,若f(x)≥a+1對一切x≥0成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知m∈R,復(fù)數(shù)z=
m(m-2)
m-1
+(m2+2m-3)i,求當m為何值時:
(1)z∈R;                       
(2)z是純虛數(shù);
(3)z的對應(yīng)點在直線x+y+3=0上;
(4)z的對應(yīng)點位于復(fù)平面的第二象限.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}滿足:a3=7,a5+a7=26,求數(shù)列{an}的通項公式及其前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于給定的數(shù)列{cn},如果存在實常數(shù)p、q,使得cn+1=pcn+q對于任意n∈N*都成立,我們稱數(shù)列{cn}是“優(yōu)美數(shù)列”.
(1)若an=2n,bn=3•2n,n∈N*,數(shù)列{an}、{bn}是否為“優(yōu)美數(shù)列”?若是,指出它對應(yīng)的實常數(shù)p、q,若不是,請說明理由;
(2)已知數(shù)列{an}滿足a1=2,an+an+1=3•2n(n∈N*).若數(shù)列{an}是“優(yōu)美數(shù)列”,求數(shù)列{an}的通項公式.

查看答案和解析>>

同步練習(xí)冊答案