精英家教網 > 高中數學 > 題目詳情

已知拋物線的頂點為原點,其焦點到直線:的距離為.設為直線上的點,過點作拋物線的兩條切線,其中為切點.
(Ⅰ) 求拋物線的方程;
(Ⅱ) 當點為直線上的定點時,求直線的方程;
(Ⅲ) 當點在直線上移動時,求的最小值.

(Ⅰ)  (Ⅱ)  (Ⅲ)

解析

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

在平面直角坐標系中,點為動點,分別為橢圓的左右焦點.已知△為等腰三角形.(1)求橢圓的離心率;(2)設直線與橢圓相交于兩點,是直線上的點,滿足,求點的軌跡方程.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖所示:已知過拋物線的焦點F的直線與拋物線相交于A,B兩點。

(1)求證:以AF為直徑的圓與x軸相切;
(2)設拋物線在A,B兩點處的切線的交點為M,若點M的橫坐標為2,求△ABM的外接圓方程;
(3)設過拋物線焦點F的直線與橢圓的交點為C、D,是否存在直線使得,若存在,求出直線的方程,若不存在,請說明理由。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖,已知直線與拋物線相切于點)且與軸交于點為坐標原點,定點B的坐標為.

(1)若動點滿足|=,求點的軌跡.
(2)若過點的直線(斜率不等于零)與(1)中的軌跡交于不同的兩點,試求面積之比的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知動圓過定點A(4,0), 且在y軸上截得的弦MN的長為8.
(Ⅰ) 求動圓圓心的軌跡C的方程;
(Ⅱ) 已知點B(-1,0), 設不垂直于x軸的直線l與軌跡C交于不同的兩點P, Q, 若x軸是的角平分線, 證明直線l過定點.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知拋物線的頂點在坐標原點,焦點在軸上,且過點.

(Ⅰ)求拋物線的標準方程;
(Ⅱ)與圓相切的直線交拋物線于不同的兩點若拋物線上一點滿足,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知橢圓(a>b>0)的焦距為4,且與橢圓有相同的離心率,斜率為k的直線l經過點M(0,1),與橢圓C交于不同兩點A、B.
(1)求橢圓C的標準方程;
(2)當橢圓C的右焦點F在以AB為直徑的圓內時,求k的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知點是直角坐標平面內的動點,點到直線(是正常數)的距離為,到點的距離為,且1.
(1)求動點P所在曲線C的方程;
(2)直線過點F且與曲線C交于不同兩點A、B,分別過A、B點作直線的垂線,對應的垂足分別為,求證=;
(3)記,
(A、B、是(2)中的點),,求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖,設是圓上的動點,點軸上投影,上一點,且.當在圓上運動時,點的軌跡為曲線. 過點且傾斜角為的直線交曲線兩點.
(1)求曲線的方程;
(2)若點F是曲線的右焦點且,求的取值范圍.

查看答案和解析>>

同步練習冊答案