(2012•濰坊二模)已知函數(shù)f(x)的圖象向左平移1個單位后關(guān)于y軸對稱,當(dāng)x2>x1>1時,[f(x2)-f(x1)](x2-x1)<0恒成立,設(shè)a=f(-
1
2
),b=f(2),c=f(3),則a、b、c的大小關(guān)系為( 。
分析:根據(jù)函數(shù)f(x)的圖象向左平移1個單位后關(guān)于y軸對稱,可得函數(shù)f(x)關(guān)于x=1對稱;由當(dāng)x2>x1>1時,[f (x2)-f (x1)]( x2-x1)<0恒成立,可得函數(shù)f(x)在(1,+∞)上為單調(diào)減函數(shù),利用單調(diào)性即可判定出a、b、c的大。
解答:解:∵函數(shù)f(x)的圖象向左平移1個單位后關(guān)于y軸對稱,
∴函數(shù)f(x)關(guān)于x=1對稱
∴a=f(-
1
2
)=f(
5
2
),
∵當(dāng)x2>x1>1時,[f (x2)-f (x1)]( x2-x1)<0恒成立
∴f (x2)-f (x1)<0,即f (x2)<f (x1
∴函數(shù)f(x)在(1,+∞)上為單調(diào)減函數(shù)
∵1<2<
5
2
<3
∴f(2)>f(
5
2
)>f(3)即b>a>c
故選D.
點評:本題主要考查了函數(shù)的單調(diào)性應(yīng)用,以及函數(shù)的對稱性的應(yīng)用,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•濰坊二模)①函數(shù)y=sin(x-
π
2
)
在[0,π]上是減函數(shù);
②點A(1,1)、B(2,7)在直線3x-y=0兩側(cè);
③數(shù)列{an}為遞減的等差數(shù)列,a1+a5=0,設(shè)數(shù)列{an}的前n項和為Sn,則當(dāng)n=4時,Sn取得最大值;
④定義運(yùn)算
.
a1
b1
a2
b2
.
=a1b2-a2b1
則函數(shù)f(x)=
.
x2+3x
x
1
1
3
x
.
的圖象在點(1,
1
3
)
處的切線方程是6x-3y-5=0.
其中正確命題的序號是
②④
②④
(把所有正確命題的序號都寫上).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•濰坊二模)已知兩條直線a,b與兩個平面α、β,b⊥α,則下列命題中正確的是( 。
①若a∥α,則a⊥b;
②若a⊥b,則a∥α; 
③若b⊥β,則α∥β;
④若α⊥β,則b∥β.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•濰坊二模)已知向量
a
=(x,-2),
b
=(y,1),其中x,y都是正實數(shù),若
a
b
,則t=x+2y的最小值是
4
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•濰坊二模)已知雙曲線C:
x2
4
-
y2
5
=1
的左、右焦點分別為F1、F2,P為C的右支上一點,且|PF2|=|F1F2|,則
PF1
PF2
等于( 。

查看答案和解析>>

同步練習(xí)冊答案