設(shè)M(ρ1,θ1),N(ρ2,θ2)兩點(diǎn)的極坐標(biāo)同時(shí)滿足下列關(guān)系:ρ12=0,θ12=0,則M,N兩點(diǎn)(位置關(guān)系)關(guān)于______對(duì)稱(chēng).
∵M(jìn)(ρ1,θ1),N(ρ2,θ2)兩點(diǎn)的極坐標(biāo)同時(shí)滿足下列關(guān)系:ρ12=0,θ12=0,
∴N點(diǎn)的極坐標(biāo)可寫(xiě)成N(-ρ1,-θ1),
它與M(ρ1,θ1)的關(guān)系是:先將M(ρ1,θ1)作極軸的對(duì)稱(chēng)點(diǎn)A(ρ1,-θ1),
再將此點(diǎn)A作關(guān)于極點(diǎn)的對(duì)稱(chēng)點(diǎn),即得N(-ρ1,-θ1),
從而則M,N兩點(diǎn)(位置關(guān)系)關(guān)于過(guò)極點(diǎn)且垂直于極軸的直線對(duì)稱(chēng).
即則M,N兩點(diǎn)(位置關(guān)系)關(guān)于 直線θ=
π
2
對(duì)稱(chēng).
故答案為:直線θ=
π
2
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

極坐標(biāo)系的極點(diǎn)是直角坐標(biāo)系的原點(diǎn),極軸為軸正半軸.已知曲線的極坐標(biāo)方程為,曲線的參數(shù)方程為(其中為參數(shù))
(1)求曲線的直角坐標(biāo)方程和曲線的普通方程;
(2)判斷曲線和曲線的位置關(guān)系;若曲線和曲線相交,求出弦長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

(坐標(biāo)系與參數(shù)方程選做題)極坐標(biāo)系中,曲線相交于點(diǎn),則            ;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

(選做題)選修4-4:坐標(biāo)系與參數(shù)方程
求直線為參數(shù))被曲線所截得的弦長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

在極坐標(biāo)系中,圓ρ=cos(θ+
π
3
)
的圓心的極坐標(biāo)為(  )
A.(
1
2
,-
π
3
)
B.(
1
2
,
π
3
)
C.(1,-
π
3
)
D.(1,
π
3
)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

直線(t為參數(shù))與曲線=1的位置關(guān)系是(    )
A.相離B.相交C.相切D.不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

極坐標(biāo)方程表示的曲線為(    )
A.一條射線和一個(gè)圓B.兩條直線C.一條直線和一個(gè)圓D.一個(gè)圓

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

以原點(diǎn)為極點(diǎn),以軸的正半軸為極軸建立極坐標(biāo)系,已知曲線,過(guò)點(diǎn)的直線的參數(shù)方程為,設(shè)直線與曲線分別交于;
(1)寫(xiě)出曲線和直線的普通方程;
(2)若成等比數(shù)列,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

(坐標(biāo)系與參數(shù)方程選做題)
同時(shí)給出極坐標(biāo)系與直角坐標(biāo)系,且極軸為ox,則極坐標(biāo)方程化為對(duì)應(yīng)的直角坐標(biāo)方程是       

查看答案和解析>>

同步練習(xí)冊(cè)答案