給出下列四個命題:
①已知函數(shù)y=2sin(x+φ)(0<φ<π)的圖象如圖所示,則;
②已知O、A、B、C是平面內(nèi)不同的四點(diǎn),且,則α+β=1是A、B、C三點(diǎn)共線的充要條件;
③若數(shù)列an恒滿足(p為正常數(shù),n∈N*),則稱數(shù)列an是“等方比數(shù)列”.根據(jù)此定義可以斷定:若數(shù)列an是“等方比數(shù)列”,則它一定是等比數(shù)列;
④求解關(guān)于變量m、n的不定方程3n-2=2m-1(n,m∈N*),可以得到該方程中變量n的所有取值的表達(dá)式為
(k∈N*).
其中正確命題的序號是   
【答案】分析:根據(jù)正弦型函數(shù)的圖象與解析式之間的關(guān)系,我們可以判斷①的真假;根據(jù)向量法證明三點(diǎn)共線的適用范圍,我們可以得到②的真假;根據(jù)等比關(guān)系的確定,我樣可以判斷③的真假;根據(jù)等比數(shù)列的性質(zhì),我們可以判斷④的真假,進(jìn)而得到答案.
解答:解:已知函數(shù)y=2sin(x+φ)(0<φ<π)的圖象如圖所示,則,故①錯誤;
若O點(diǎn)不在A,B,C所確定的直線上,則α+β=1是A、B、C三點(diǎn)共線的充要條件,但O,A,B,C四點(diǎn)共線時,α+β=1是A、B、C三點(diǎn)共線的充分不必要條件,故②錯誤;
當(dāng)“等方比數(shù)列”an的公比為1時,數(shù)列an也是等比數(shù)列,反之則不成立,故③錯誤;
解關(guān)于變量m、n的不定方程3n-2=2m-1(n,m∈N*),
可以得n==
又∵n∈N*,∴m+1為偶數(shù)
令m+1=2k,則故④正確;
故答案為:④
點(diǎn)評:本題考查的知識點(diǎn)是由y=Asin(ωx+φ)的部分圖象確定其解析式,等比關(guān)系的確定,三點(diǎn)共線,熟練掌握相關(guān)的知識點(diǎn),逐一分析四個結(jié)論的正誤是解答本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

12、已知a、b是兩條不重合的直線,α、β、γ是三個兩兩不重合的平面,給出下列四個命題:
①若a⊥α,a⊥β,則α∥β;
②若α⊥γ,β⊥γ,則α∥β;
③若α∥β,a?α,b?β,則a∥b;
④若α∥β,α∩γ=a,β∩γ=b,則a∥b.
其中正確命題的序號有
①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列四個命題:
①函數(shù)y=
1
x
的單調(diào)減區(qū)間是(-∞,0)∪(0,+∞);
②函數(shù)y=x2-4x+6,當(dāng)x∈[1,4]時,函數(shù)的值域為[3,6];
③函數(shù)y=3(x-1)2的圖象可由y=3x2的圖象向右平移1個單位得到;
④若函數(shù)f(x)的定義域為[0,2],則函數(shù)f(2x)的定義域為[0,1];
⑤若A={s|s=x2+1},B={y|x=
y-1
}
,則A∩B=A.
其中正確命題的序號是
③④⑤
③④⑤
.(填上所有正確命題的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將邊長為2,銳角為60°的菱形ABCD沿較短對角線BD折成二面角A-BD-C,點(diǎn)E,F(xiàn)分別為AC,BD的中點(diǎn),給出下列四個命題:
①EF∥AB;②直線EF是異面直線AC與BD的公垂線;③當(dāng)二面角A-BD-C是直二面角時,AC與BD間的距離為
6
2
;④AC垂直于截面BDE.
其中正確的是
②③④
②③④
(將正確命題的序號全填上).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列四個命題,其中正確的命題的個數(shù)為(  )
①命題“?x0∈R,2x0≤0”的否定是“?x∈R,2x>0”;
log2sin
π
12
+log2cos
π
12
=-2;
③函數(shù)y=tan
x
2
的對稱中心為(kπ,0),k∈Z;
④[cos(3-2x)]=-2sin(3-2x)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列四個命題:
①函數(shù)y=ax(a>0且a≠1)與函數(shù)y=logaax(a>0且a≠1)的定義域相同;
②函數(shù)y=x3與y=3x的值域相同;
③函數(shù)y=
1
2
+
1
2x-1
y=
(1+2x)2
x•2x
都是奇函數(shù);
④函數(shù)y=(x-1)2與y=2x-1在區(qū)間[0,+∞)上都是增函數(shù),其中正確命題的序號是(  )

查看答案和解析>>

同步練習(xí)冊答案