【題目】1是直角梯形,,,,,.為折痕將折起,使點到達的位置,且,如圖2.

1)證明:平面平面;

2)求直線與平面所成角的正弦值.

【答案】1)證明見解析;(2

【解析】

1)做輔助線,先根據(jù)線線垂直證明,進而可證平面平面;

2)建立平面直角坐標系,求出平面的法向量,利用法向量法可求直線與平面所成角的正弦值.

1)證明:在圖1中,連結,由已知得

,

∴四邊形為菱形,

連結于點

,

又∵在中,,

在圖2中,,

,∴,

由題意知

,又平面,

∴平面平面;

2)如圖,以為坐標原點,,分別為軸,方向為軸正方向建立空間直角坐標系.由已知得各點坐標為

,

所以,,

設平面的法向量為,則,

所以,即,令,解得

所以,

所以

記直線與平面所成角為,

.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】經(jīng)過點P(3,2),且在兩坐標軸上的截距相等的直線方程為(寫出一般式)___

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列關于獨立性檢驗的敘述

①常用等高條形圖表示列聯(lián)表數(shù)據(jù)的頻率特征;

②獨立性檢驗依據(jù)小概率原理;

③獨立性檢驗的結果是完全正確的;

④對分類變量的隨機變量的觀測值來說,越小,有關系的把握程度就越大.

其中敘述正確的個數(shù)為(

A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設集合,是非空集合的兩個不同子集.

1)若,且的子集,求所有有序集合對的個數(shù);

2)若,且的子集,求所有有序集合對的個數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在直角梯形中,,,,的中點,的交點.將沿折起到的位置,如圖

)證明:平面;

)若平面平面,求平面與平面夾角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某屆奧運會上,中國隊以261826銅的成績稱金牌榜第三、獎牌榜第二,某校體育愛好者在高三年級一班至六班進行了“本屆奧運會中國隊表現(xiàn)”的滿意度調查結果只有“滿意”和“不滿意”兩種,從被調查的學生中隨機抽取了50人,具體的調查結果如表:

班號

一班

二班

三班

四班

五班

六班

頻數(shù)

5

9

11

9

7

9

滿意人數(shù)

4

7

8

5

6

6

(1)在高三年級全體學生中隨機抽取一名學生,由以上統(tǒng)計數(shù)據(jù)估計該生持滿意態(tài)度的概率;

(2)若從一班至二班的調查對象中隨機選取4人進行追蹤調查,記選中的4人中對“本屆奧運會中國隊表現(xiàn)”不滿意的人數(shù)為,求隨機變量的分布列及數(shù)學期望

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知四邊形的直角梯形,BC,為線段的中點,平面為線段上一點(不與端點重合).

1)若,

(ⅰ)求證:PC平面;

(ⅱ)求平面與平面所成的銳二面角的余弦值;

2)否存在實數(shù)滿足,使得直線與平面所成的角的正弦值為,若存在,確定的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,內角A,B,C的對邊分別為a,bc,已知asinBbsinA).

1)求A

2D是線段BC上的點,若ADBD2,CD3,求△ADC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面四邊形中, , ,將沿折起,使得平面平面,如圖.

(1)求證:

(2)若中點,求直線與平面所成角的正弦值.

查看答案和解析>>

同步練習冊答案