已知向量
a
=(1, 2), 
b
=(-2,  m),  
x
=
a
+(t2+1)
b
,  
y
=-k
a
+
1
t
b
,  m∈R
,k,t為正實(shí)數(shù),
(1)若
a
b
,求m的值;
(2)若
a
b
,求m的值;
(3)當(dāng)m=1時(shí),若
x
y
,求k的最小值.
分析:(1)(2)由平行和垂直的條件分別可得關(guān)于m的方程,解之可得;(3)把m=1代入,分別可得向量
x
y
的坐標(biāo),由垂直可得k,x的關(guān)系式,由基本不等式可得答案.
解答:解:(1)由
a
b
可得1×m-2×(-2)=0,解之可得m=-4;
(2)由
a
b
可得1×(-2)+2×m=0,解之可得m=1;
(3)當(dāng)m=1時(shí),
x
=
a
+(t2+1)
b
=(-2t2-1,t2+3),
y
=-k
a
+
1
t
b
=(-k-
2
t
-2k+
1
t
),
x
y
可得(-2t2-1)(-k-
2
t
)+(t2+3)(-2k+
1
t
)=0,
化簡(jiǎn)可得k=t+
1
t
≥2
,當(dāng)且僅當(dāng)t=1時(shí)取等號(hào),
故k的最小值為:2
點(diǎn)評(píng):本題考查平面向量垂直于平行的判定,涉及基本不等式的應(yīng)用,屬中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
a
=(1,
3
)
,
b
=(-2,0)
,則|
a
+
b
|
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
a
=(1,1)
,
b
=(2,3)
,向量λ
a
-
b
垂直于y軸,則實(shí)數(shù)λ=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
a
=(1,
1-x
x
), 
b
=(x-1,1)
,則|
a
+
b
|
的最小值是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
a
=(1,1,2)
b
=(-1,k,3)
垂直,則實(shí)數(shù)k的值為
-5
-5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•西城區(qū)二模)已知向量
a
=(1,
3
)
,
a
+
b
=(0, 
3
)
,設(shè)
a
b
的夾角為θ,則θ=
120°
120°

查看答案和解析>>

同步練習(xí)冊(cè)答案